BRST covariant Yang-Mills squared

A gauge-independent map of equations of motion

arXiv:1806.xxxx
With A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy

Michele Zoccali
mz2313@ic.ac.uk

Reminder

- The basic building block is a x-space convolution

$$
F(x)=\left(f^{I} \star \phi_{I I^{\prime}} \star g^{I^{\prime}}\right)(x) \equiv(f \circ g)(x)
$$

which allows to derive the action of certain operators on gravitational fields from that of the analogous operators on the gauge side:

$$
\mathcal{O} F=\hat{\mathcal{O}}(f \circ g) \quad \text { given } \quad \hat{\mathcal{O}} f^{I}, \hat{\mathcal{O}} \phi_{I I^{\prime}}, \hat{\mathcal{O}} g^{I^{\prime}}
$$

- E.g., for symmetries

$$
\delta F=\hat{\delta}(f \circ g)=\hat{\delta} f \circ g+f \circ \hat{\delta} g
$$

Motivation

- BCJ double copy: (super)gravity amplitudes from (S)YM
- Classical solutions: substitution rules, case-by-case basis, gauge-dependent!
- In spacetime approach, relation between equations on motion restricted Lorenz gauge.

Goal

To extend the field-theoretic dictionary, to obtain content, symmetries and equations of motion of (super)gravity from those of the underlying (two copies of) Yang-Mills, without restricting to a specific choice of gauge fixing.

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+b \partial^{\mu} A_{\mu}-\frac{\xi}{2} b^{2}-\bar{c} \square c\right)
$$

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+b \partial^{\mu} A_{\mu}-\frac{\xi}{2} b^{2}-\bar{c} \square c\right)
$$

- The dynamical equations of motion are

$$
\begin{aligned}
\partial^{\mu} F_{\mu \nu}^{I} & =\partial_{\nu} b^{I} \\
\square c^{I a} & =0
\end{aligned}
$$

while the Lautrup-Nakanishi auxiliary field is constrained

$$
b^{I}=\frac{1}{\bar{\xi}} \partial^{\mu} A_{\mu}
$$

and free (due to current conservation)

$$
\square b^{I}=0
$$

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+b \partial^{\mu} A_{\mu}-\frac{\xi}{2} b^{2}-\bar{c} \square c\right)
$$

- The dynamical equations of motion are

$$
\begin{aligned}
\partial^{\mu} F_{\mu \nu}^{I} & =\partial_{\nu} b^{I} \\
\square c^{I a} & =0
\end{aligned}
$$

while the Lautrup-Nakanishi auxiliary field is constrained

$$
b^{I}=\frac{1}{\xi} \partial^{\mu} A_{\mu}
$$

and free (due to current conservation)

$$
\square b^{I}=0
$$

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}-\bar{c} \square c\right)
$$

- The equations of motion are

$$
\begin{aligned}
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I} & =0 & \xi^{\prime} \equiv \frac{\xi+1}{\xi} \\
\square c^{I a} & =0 &
\end{aligned}
$$

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}-\bar{c} \square c\right)
$$

- The equations of motion are

$$
\begin{aligned}
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I} & =0 & \xi^{\prime} \equiv \frac{\xi+1}{\xi} \\
\square c^{I a} & =0 &
\end{aligned}
$$

- The theory is invariant under the following (on-shell nilpotent) BRST transformations, which encode the late gauge invariance (fixed):

$$
Q A_{\mu}^{I}=\partial_{\mu} c^{I}, \quad Q c^{I}=0, \quad Q \bar{c}^{I}=\frac{1}{\xi} \partial^{\mu} A_{\mu}^{I}
$$

- Simplifying features for certain choices of "gauge"

$$
\begin{aligned}
& \xi=0 \\
& \xi=-1 \quad\left(\xi^{\prime}=0\right)
\end{aligned}
$$

(Landau gauge)
(Feynman-'t Hooft gauge)

Yang-Mills, ghosts and BRST symmetry

$$
\mathcal{L}_{A_{\mu}}=\operatorname{tr}\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}-\bar{c} \square c\right)
$$

- The equations of motion are

$$
\begin{aligned}
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I} & =0 & \xi^{\prime} \equiv \frac{\xi+1}{\xi} \\
\square c^{I a} & =0 &
\end{aligned}
$$

- The theory is invariant under the following (on-shell nilpotent) BRST transformations, which encode the late gauge invariance (fixed):

$$
Q A_{\mu}^{I}=\partial_{\mu} c^{I}, \quad Q c^{I}=0, \quad Q \bar{c}^{I}=\frac{1}{\xi} \partial^{\mu} A_{\mu}^{I}
$$

- Simplifying features for certain choices of "gauge"

$$
\begin{aligned}
& \xi=0 \\
& \xi=-1 \quad\left(\xi^{\prime}=0\right)
\end{aligned}
$$

(Landau gauge)
(Feynman-'t Hooft gauge)

Keep it general!

Gauge \times gauge $=$?

Gauge \times gauge $=$?

	$\tilde{A}_{\nu}(0)$ $A_{\mu}(0)$ $c^{a}(\pm 1)$ $A_{(\mu} \circ \tilde{A}_{\nu)}-\frac{\eta_{\mu \nu}}{D} A^{\rho} \circ \tilde{A}_{\rho}$ $A_{[\mu} \circ \tilde{A}_{\nu]}$ $A^{\rho} \circ \tilde{A}_{\rho}$	$A_{\mu} \circ \tilde{c}^{b}$
	$c^{a} \circ \tilde{A}_{\mu}$	$c^{(a} \circ \tilde{c}^{b)}$
		$c^{a} \circ \tilde{c}_{a}$

$$
\begin{aligned}
g h(f \circ \tilde{g}) & =g h(f)+g h(\tilde{g}) \\
\epsilon(f \circ \tilde{g}) & =\epsilon(f)+\epsilon(\tilde{g}) \quad(\bmod 2)
\end{aligned}
$$

Gauge \times gauge $=$?

	$\tilde{A}_{\nu}(0)$	$\tilde{c}^{b}(\pm 1)$
$A_{\mu}(0)$	$\begin{gathered} A_{(\mu} \circ \tilde{A}_{\nu)}-\frac{\eta_{\mu \nu}}{D} A^{\rho} \circ \tilde{A}_{\rho} \\ A_{[\mu} \circ \tilde{A}_{\nu]} \\ A^{\rho} \circ \tilde{A}_{\rho} \end{gathered}$	$A_{\mu} \circ \tilde{c}^{b}$
$c^{a}(\pm 1)$	$c^{a} \circ \tilde{A}_{\mu}$	$\begin{aligned} & c^{(a} \circ \tilde{c}^{b)} \\ & c^{a} \circ \tilde{c}_{a} \end{aligned}$

$$
\begin{align*}
g h(f \circ \tilde{g}) & =g h(f)+g h(\tilde{g}) \\
\epsilon(f \circ \tilde{g}) & =\epsilon(f)+\epsilon(\tilde{g}) \quad(\bmod 2) \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \underline{1}: \quad c^{a} \circ \tilde{c}_{a}=\varepsilon_{a b} c^{a} \circ \tilde{c}^{b}=c \circ \overline{\tilde{c}}-\bar{c} \circ \tilde{c} \tag{0}\\
& \left.\underline{3}: \quad c^{(a} \circ \tilde{c}^{b}\right)=\left\{\begin{array}{l}
c \circ \tilde{c} \\
c \circ \overline{\tilde{c}}+\bar{c} \circ \tilde{c} \\
\bar{c} \circ \overline{\tilde{c}}
\end{array}\right. \tag{0}
\end{align*}
$$

Gauge \times gauge $=$?

	$\tilde{A}_{\nu}(0)$	$\tilde{c}^{b}(\pm 1)$
	$h_{\mu \nu}^{t}$	
$A_{\mu}(0)$	$\begin{aligned} & B_{\mu \nu} \quad(0) \\ & \varphi, h \end{aligned}$	$A_{\mu} \circ \tilde{c}^{b}$
$c^{a}(\pm 1)$	$c^{a} \circ \tilde{A}_{\mu}$	$\begin{aligned} & c^{(a} \circ \tilde{c}^{b)} \\ & c^{a} \circ \tilde{c}_{a} \end{aligned}$

$$
\begin{align*}
g h(f \circ \tilde{g}) & =g h(f)+g h(\tilde{g}) \\
\epsilon(f \circ \tilde{g}) & =\epsilon(f)+\epsilon(\tilde{g}) \quad(\bmod 2) \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { 1: } \quad c^{a} \circ \tilde{c}_{a}=\varepsilon_{a b} c^{a} \circ \tilde{c}^{b}=c \circ \overline{\tilde{c}}-\bar{c} \circ \tilde{c} \tag{0}\\
& \underline{3}: \quad c^{(a} \circ \tilde{c}^{b)}=\left\{\begin{array}{l}
c \circ \tilde{c} \\
c \circ \overline{\tilde{c}}+\bar{c} \circ \tilde{c} \\
\bar{c} \circ \overline{\tilde{c}}
\end{array}\right. \tag{0}
\end{align*}
$$

Gravitational theory: BRST

$$
\mathcal{L}_{h_{\mu \nu}}=-\frac{1}{4} h^{\mu \nu} E_{\mu \nu}+\frac{1}{2 \xi_{(h)}}\left(\partial^{\nu} h_{\mu \nu}-\frac{1}{2} \partial_{\mu} h\right)^{2}-\bar{c}^{\mu} \square c_{\mu}-\frac{1}{4} \partial^{\mu} \varphi \partial_{\mu} \varphi
$$

- Invariance under the set of BRST variations

$$
\begin{aligned}
Q h_{\mu \nu} & =2 \partial_{(\mu} c_{\nu)} & Q c_{\mu} & =0 \\
Q \bar{c}_{\mu} & =\frac{1}{\xi_{(h)}}\left(\partial^{\nu} h_{\mu \nu}-\frac{1}{2} \partial_{\mu} h\right) & Q \varphi & =0
\end{aligned}
$$

Field	Ghost number	Mass dimension
$h_{\mu \nu}$	0	1
c_{μ}	1	0
\bar{c}_{μ}	-1	2

Gravitational theory: BRST

$$
\mathcal{L}_{h_{\mu \nu}}=-\frac{1}{4} h^{\mu \nu} E_{\mu \nu}+\frac{1}{2 \xi_{(h)}}\left(\partial^{\nu} h_{\mu \nu}-\frac{1}{2} \partial_{\mu} h\right)^{2}-\bar{c}^{\mu} \square c_{\mu}-\frac{1}{4} \partial^{\mu} \varphi \partial_{\mu} \varphi
$$

- Invariance under the set of BRST variations

$$
\begin{aligned}
Q h_{\mu \nu} & =2 \partial_{(\mu} c_{\nu)} & Q c_{\mu} & =0 \\
Q \bar{c}_{\mu} & =\frac{1}{\xi_{(h)}}\left(\partial^{\nu} h_{\mu \nu}-\frac{1}{2} \partial_{\mu} h\right) & Q \varphi & =0
\end{aligned}
$$

Field	Ghost number	Mass dimension
$h_{\mu \nu}$	0	1
c_{μ}	1	0
\bar{c}_{μ}	-1	2

$$
\mathcal{L}_{B_{\mu \nu}}=-\frac{1}{24} H^{\mu \nu \rho} H_{\mu \nu \rho}+\frac{1}{2 \xi_{(B)}}\left(\partial_{\mu} B^{\mu \nu}+l_{(B)} \partial^{\nu} \eta\right)^{2}-\bar{d}_{\nu} \square d^{\nu}+\frac{\xi_{(d)}-m_{(d)}}{\xi_{(d)}} \bar{d}_{\mu} \partial_{\mu} \partial^{\nu} d_{\nu}+m_{(d)} \bar{d} \square d
$$

$$
\begin{aligned}
Q B_{\mu \nu} & =2 \partial_{[\mu} d_{\nu]} & Q d_{\mu} & =\partial_{\mu} d \\
Q \bar{d}_{\mu} & =\frac{1}{\xi_{(B)}}\left(\partial^{\nu} B_{\mu \nu}+l_{(B)} \partial_{\mu} \eta\right) & & Q d=0 \\
Q \bar{d} & =\frac{1}{\xi_{(d)}} \partial^{\mu} \bar{d}_{\mu} & & Q \eta=\frac{m_{(d)}}{l_{(B)} \xi_{(d)}} \partial^{\mu} d_{\mu}
\end{aligned}
$$

Field	Ghost number	Mass dimension
$B_{\mu \nu}$	0	1
d_{μ}	1	0
\bar{d}_{μ}	-1	2
d	2	-1
\bar{d}	-2	3
η	0	1

	$\underline{\tilde{A}_{\nu}(0)}$	$\underline{\tilde{c}^{b}(\pm 1)}$
$A_{\mu}(0)$	$h_{\mu \nu}^{t}$ $B_{\mu \nu} \quad(0)$ φ, h	$A_{\mu} \circ \tilde{c}^{b}$
$c^{a}(\pm 1)$	$c^{a} \circ \tilde{A}_{\mu}$	$c^{\left(a \circ \tilde{c}^{b)}\right.}$

$$
\begin{align*}
& \underline{1}: \quad c^{a} \circ \tilde{c}_{a}=\varepsilon_{a b} c^{a} \circ \tilde{c}^{b}=c \circ \overline{\tilde{c}}-\bar{c} \circ \tilde{c} \tag{0}\\
& \left.\underline{3}: \quad c^{(a} \circ \tilde{c}^{b}\right)=\left\{\begin{array}{l}
c \circ \tilde{c} \\
c \circ \overline{\tilde{c}}+\bar{c} \circ \tilde{c} \\
\bar{c} \circ \overline{\tilde{c}}
\end{array}\right. \tag{2}
\end{align*}
$$

	$\tilde{A}_{\nu}(0)$	$\tilde{c}^{b}(\pm 1)$
$A_{\mu}(0)$	$\begin{array}{ll} h_{\mu \nu}^{t} & \\ B_{\mu \nu} & (0) \\ \varphi, h \end{array}$	$c_{\mu}^{a}, d_{\mu}^{a} \quad(\pm 1)$
$c^{a}(\pm 1)$	$c_{\mu}^{a}, d_{\mu}^{a} \quad(\pm 1)$	$\begin{aligned} & \left.c^{(a} \circ \tilde{c}^{b}\right) \\ & c^{a} \circ \tilde{c}_{a} \end{aligned}$

$$
\begin{align*}
& \underline{1}: \quad c^{a} \circ \tilde{c}_{a}=\varepsilon_{a b} c^{a} \circ \tilde{c}^{b}=c \circ \overline{\tilde{c}}-\bar{c} \circ \tilde{c} \tag{0}\\
& \left.\underline{3}: \quad c^{(a} \circ \tilde{c}^{b}\right)=\left\{\begin{array}{l}
c \circ \tilde{c} \\
c \circ \overline{\tilde{c}}+\bar{c} \circ \tilde{c} \\
\bar{c} \circ \overline{\tilde{c}}
\end{array}\right. \tag{2}
\end{align*}
$$

	$\tilde{A}_{\nu}(0)$	$\tilde{c}^{b}(\pm 1)$
$A_{\mu}(0)$	$\begin{array}{ll} h_{\mu \nu}^{t} & \\ B_{\mu \nu} & (0) \\ \varphi, h \end{array}$	$c_{\mu}^{a}, d_{\mu}^{a} \quad(\pm 1)$
$c^{a}(\pm 1)$	$c_{\mu}^{a}, d_{\mu}^{a} \quad(\pm 1)$	$\begin{aligned} & \left.c^{(a} \circ \tilde{c}^{b}\right) \\ & c^{a} \circ \tilde{c}_{a} \end{aligned}$

$$
\begin{array}{ll}
\text { 1: } & c^{a} \circ \tilde{c}_{a}=\varepsilon_{a b} c^{a} \circ \tilde{c}^{b}=\varphi, h \\
\underline{3}: & c^{(a} \circ \tilde{c}^{b)}=\left\{\begin{array}{l}
d \\
\eta \\
\bar{d}
\end{array}\right. \tag{2}
\end{array}
$$

Not enough..

- Consider the obvious choice (of all possible local scalar terms)

$$
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\alpha c^{a} \circ \tilde{c}_{a}
$$

Indeed, it is not enough to map both BRST symmetry and e.o.m in a gaugeindependent fashion: while it accommodates BRST, it fails to map the e.o.m in an arbitrary gauge,

$$
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I}=0 \quad \square \quad \square \varphi=\square\left(A^{\rho} \circ \tilde{A}_{\rho}\right)+\alpha \square\left(c^{a} \circ \tilde{c}_{a}\right)
$$

Not enough..

- Consider the obvious choice (of all possible local scalar terms)

$$
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\alpha c^{a} \circ \tilde{c}_{a}
$$

Indeed, it is not enough to map both BRST symmetry and e.o.m in a gaugeindependent fashion: while it accommodates BRST, it fails to map the e.o.m in an arbitrary gauge,

$$
\begin{aligned}
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I}=0 \\
\square c^{I a}=0
\end{aligned} \quad \begin{aligned}
\square \varphi & =\square\left(A^{\rho} \circ \tilde{A}_{\rho}\right)+\alpha \square\left(c^{a} \circ \tilde{c}_{a}\right) \\
& =\xi^{\prime}\left(\xi^{\prime}-2\right)(\partial A \circ \partial \tilde{A}) \\
& \stackrel{!}{=} 0
\end{aligned}
$$

Convolution and boundary conditions

- The functions require nice fall-offs at infinity in order for the convolution integral to converge and to obey the derivative rule:

$$
\partial_{\mu}(f \star g)=\left(\partial_{\mu} f\right) \star g=f \star\left(\partial_{\mu} g\right)
$$

- Encode boundary conditions in effective sources, $\square f=j$ and define Green's function operator

$$
G \star j \equiv \frac{1}{\square} j
$$

Need for Green’s function

- Instead, add all non-local terms consistent with mass dimension, ghost number, parity:

$$
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\alpha_{1} c^{a} \circ \tilde{c}_{a}+\frac{\alpha_{2}}{\square} \partial A \circ \partial \tilde{A}
$$

- The YM equations are

$$
\begin{aligned}
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I} & =j_{\mu}^{I}(A) \\
\square c^{I a} & =j^{I a}(c)
\end{aligned}
$$

$$
\begin{aligned}
\square\left(A^{\rho} \circ \tilde{A}_{\rho}\right) & =\frac{1}{\square} \square A^{\rho} \circ \square \tilde{A}_{\rho} \\
& =\xi^{\prime}\left(\xi^{\prime}-2\right) \partial A \circ \partial \tilde{A}+\frac{1}{\square} j^{\rho} \circ \tilde{j}_{\rho} \\
\square\left(c^{a} \circ c_{a}\right) & =\frac{1}{\square} j^{a}(c) \circ \tilde{j}_{a}(c) \\
\square\left(\square^{-1} \partial A \circ \partial \tilde{A}\right) & =\partial A \circ \partial \tilde{A}
\end{aligned}
$$

- This dictionary reproduces BRST and e.o.m. $\square \varphi=j(\varphi)$

$$
Q \varphi=0
$$

$$
\begin{gathered}
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\left(\xi^{\prime}-1\right) c^{a} \circ \tilde{c}_{a}+\xi^{\prime}\left(\xi^{\prime}-2\right) \frac{1}{\square} \partial A \circ \partial \tilde{A} \\
j(\varphi)=\frac{1}{\square} j^{\rho} \circ \tilde{j}_{\rho}+\frac{\alpha_{1}}{\square} j^{a} \circ \tilde{j}_{a} \\
\hline
\end{gathered}
$$

Dictionary

Physical sector:

$$
\begin{aligned}
h_{\mu \nu}= & 2 A_{(\mu} \circ \tilde{A}_{\nu)}+a_{1} \frac{\partial_{\mu} \partial_{\nu}}{\square} A \circ \tilde{A}+a_{2} \frac{\partial_{\mu} \partial_{\nu}}{\square} c^{a} \circ \tilde{c}_{a}+\frac{a_{3}}{\square}\left(\partial A \circ \partial_{(\mu} \tilde{A}_{\nu)}+\partial_{(\mu} A_{\nu)} \circ \partial \tilde{A}\right) \\
& +\eta_{\mu \nu}\left(b_{1} A \circ \tilde{A}+b_{2} c^{a} \circ \tilde{c}_{a}+\frac{b_{3}}{\square} \partial A \circ \partial \tilde{A}\right) \\
B_{\mu \nu}= & 2 A_{[\mu} \circ \tilde{A}_{\nu]}+\left(\frac{\xi^{\prime}-3}{1-\xi^{\prime}}\right) \frac{1}{\square}\left(\partial A \circ \partial_{[\mu} \tilde{A}_{\nu]}-\partial_{[\mu} A_{\nu]} \circ \partial \tilde{A}\right)
\end{aligned}
$$

$$
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\left(\xi^{\prime}-1\right) c^{a} \circ \tilde{c}_{a}+\xi^{\prime}\left(\xi^{\prime}-2\right) \frac{1}{\square} \partial A \circ \partial \tilde{A} \quad a_{1}=2 \frac{\xi^{\prime}-1}{\xi^{\prime}-2}, \quad a_{2}=\frac{\xi^{\prime}}{\xi^{\prime}-2}, \quad a_{3}=-1
$$

$$
b_{1}=\frac{2}{(2-D)\left(2-\xi^{\prime}\right)}, \quad b_{2}=\left(\xi^{\prime}-1\right) b_{1}, \quad b_{3}=\xi^{\prime}\left(\xi^{\prime}-2\right) b_{1}
$$

Dictionary

Physical sector:

$$
\begin{array}{rlrl}
h_{\mu \nu}= & 2 A_{(\mu} \circ \tilde{A}_{\nu)}+a_{1} \frac{\partial_{\mu} \partial_{\nu}}{\square} A \circ \tilde{A}+a_{2} \frac{\partial_{\mu} \partial_{\nu}}{\square} c^{a} \circ \tilde{c}_{a}+\frac{a_{3}}{\square}\left(\partial A \circ \partial_{(\mu} \tilde{A}_{\nu)}+\partial_{(\mu} A_{\nu)} \circ \partial \tilde{A}\right) \\
& +\eta_{\mu \nu}\left(b_{1} A \circ \tilde{A}+b_{2} c^{a} \circ \tilde{c}_{a}+\frac{b_{3}}{\square} \partial A \circ \partial \tilde{A}\right) \\
B_{\mu \nu}= & 2 A_{[\mu} \circ \tilde{A}_{\nu]}+\left(\frac{\xi^{\prime}-3}{1-\xi^{\prime}}\right) \frac{1}{\square}\left(\partial A \circ \partial_{[\mu} \tilde{A}_{\nu]}-\partial_{[\mu} A_{\nu]} \circ \partial \tilde{A}\right) & \\
\varphi= & A^{\rho} \circ \tilde{A}_{\rho}+\left(\xi^{\prime}-1\right) c^{a} \circ \tilde{c}_{a}+\xi^{\prime}\left(\xi^{\prime}-2\right) \frac{1}{\square} \partial A \circ \partial \tilde{A} & a_{1}=2 \frac{\xi^{\prime}-1}{\xi^{\prime}-2}, & a_{2}=\frac{\xi^{\prime}}{\xi^{\prime}-2}, \\
a_{1}=\frac{2}{(2-D)\left(2-\xi^{\prime}\right)}, & b_{2}=\left(\xi^{\prime}-1\right) b_{1}, & b_{3}=\xi^{\prime}\left(\xi^{\prime}-2\right) b_{1}
\end{array}
$$

$$
Q A_{\mu}^{I}=\partial_{\mu} c^{I}, \quad Q c^{I}=0, \quad Q \bar{c}^{I}=\frac{1}{\xi} \partial^{\mu} A_{\mu}^{I}
$$

$$
\left.\begin{array}{rlrl}
Q h_{\mu \nu} & =2 \partial_{(\mu} c_{\nu)} & Q c_{\mu}=0 & Q B_{\mu \nu}
\end{array}=2 \partial_{[\mu} d_{\nu]} \quad Q d_{\mu}=\partial_{\mu} d\right)
$$

Dictionary

Physical sector:

$$
c_{\mu}=\frac{1}{2}\left(c \circ \tilde{A}_{\mu}+A_{\mu} \circ \tilde{c}\right)-\frac{\xi^{\prime}}{2} \frac{\partial_{\mu}}{\square}(c \circ \partial \tilde{A}+\partial A \circ \tilde{c})
$$

$$
h_{\mu \nu}=2 A_{(\mu} \circ \tilde{A}_{\nu)}+a_{1} \frac{\partial_{\mu} \partial_{\nu}}{\square} A \circ \tilde{A}+a_{2} \frac{\partial_{\mu} \partial_{\nu}}{\square} c^{a} \subset d_{\mu}=\frac{\xi^{\prime}+1}{2\left(\xi^{\prime}-1\right)}\left(c \circ \tilde{A}_{\mu}-A_{\mu} \circ \tilde{c}\right)-\frac{\xi^{\prime}\left(\xi^{\prime}+1\right)}{2\left(\xi^{\prime}-1\right)} \frac{\partial_{\mu}}{\square}(c \circ \partial \tilde{A}-\partial A \circ \tilde{c})
$$

$$
+\eta_{\mu \nu}\left(b_{1} A \circ \tilde{A}+b_{2} c^{a} \circ \tilde{c}_{a}+\frac{b_{3}}{\square} \partial A \circ \partial \hat{A} \begin{array}{rl}
d= & \left(1-\xi^{\prime 2}\right) c \circ \tilde{c} \\
\left(\xi^{\prime}-2\right)\left(\xi^{\prime}+1\right.
\end{array}\right.
$$

$$
B_{\mu \nu}=2 A_{[\mu} \circ \tilde{A}_{\nu]}+\left(\frac{\xi^{\prime}-3}{1-\xi^{\prime}}\right) \frac{1}{\square}\left(\partial A \circ \partial_{[\mu} \tilde{A}_{\nu]}\right.
$$

$$
\eta=\frac{\left(\xi^{\prime}-2\right)\left(\xi^{\prime}+1\right)}{2\left(1-\xi^{\prime}\right)}(c \circ \tilde{c}+\bar{c} \circ \tilde{c})
$$

$$
\varphi=A^{\rho} \circ \tilde{A}_{\rho}+\left(\xi^{\prime}-1\right) c^{a} \circ \tilde{c}_{a}+\xi^{\prime}\left(\xi^{\prime}-2\right) \frac{1}{\square} \partial A \circ \partial \tilde{A} \quad a_{1}=2 \frac{\xi^{\prime}-1}{\xi^{\prime}-2}, \quad a_{2}=\frac{\xi^{\prime}}{\xi^{\prime}-2}, \quad a_{3}=-1
$$

$$
b_{1}=\frac{2}{(2-D)\left(2-\xi^{\prime}\right)}, \quad b_{2}=\left(\xi^{\prime}-1\right) b_{1}, \quad b_{3}=\xi^{\prime}\left(\xi^{\prime}-2\right) b_{1}
$$

$$
Q A_{\mu}^{I}=\partial_{\mu} c^{I}, \quad Q c^{I}=0, \quad Q \bar{c}^{I}=\frac{1}{\xi} \partial^{\mu} A_{\mu}^{I}
$$

$$
\left.\begin{array}{rlrl}
Q h_{\mu \nu} & =2 \partial_{(\mu} c_{\nu)} & Q c_{\mu}=0 & Q B_{\mu \nu}
\end{array}=2 \partial_{[\mu} d_{\nu]} \quad Q d_{\mu}=\partial_{\mu} d\right)
$$

Dictionary

Physical sector:

$$
\square A_{\mu}^{I}-\xi^{\prime} \partial_{\mu} \partial A^{I}=j_{\mu}^{I}(A)
$$

$$
\square c^{I a}=j^{I a}(c)
$$

$$
\begin{aligned}
& \xi^{\prime} \\
& \xi=\xi_{(h)}=\xi_{(B)}=\xi_{(d)}
\end{aligned}
$$

$\square h_{\mu \nu}-2 \xi_{(h)}^{\prime} \partial^{\rho} \partial_{(\mu} h_{\nu) \rho}+\xi_{(h)}^{\prime} \partial_{\mu} \partial_{\nu} h=j_{\mu \nu}(h)$
$\square B_{\mu \nu}-\xi_{(B)}^{\prime} \partial^{\rho} \partial_{[\mu} B_{\nu] \rho}=j_{\mu \nu}(B)$

$$
\xi_{(h)}^{\prime}, \xi_{(B)}^{\prime}, \xi_{(d)}^{\prime}
$$

$\square \varphi=j(\varphi)$

$$
\begin{aligned}
& h_{\mu \nu}=2 A_{(\mu} \circ \tilde{A}_{\nu)}+a_{1} \frac{\partial_{\mu} \partial_{\nu}}{\square} A \circ \tilde{A}+a_{2} \frac{\partial_{\mu} \partial_{\nu}}{\square} c^{a} \circ \tilde{c}_{a}+\frac{a_{3}}{\square}\left(\partial A \circ \partial_{(\mu} \tilde{A}_{\nu)}+\partial_{(\mu} A_{\nu)} \circ \partial \tilde{A}\right) \\
& +\eta_{\mu \nu}\left(b_{1} A \circ \tilde{A}+b_{2} c^{a} \circ \tilde{c}_{a}+\frac{b_{3}}{\square} \partial A \circ \partial \tilde{A}\right) \\
& B_{\mu \nu}=2 A_{[\mu} \circ \tilde{A}_{\nu]}+\left(\frac{\xi^{\prime}-3}{1-\xi^{\prime}}\right) \frac{1}{\square}\left(\partial A \circ \partial_{[\mu} \tilde{A}_{\nu]}-\partial_{[\mu} A_{\nu]} \circ \partial \tilde{A}\right) \\
& \varphi=A^{\rho} \circ \tilde{A}_{\rho}+\left(\xi^{\prime}-1\right) c^{a} \circ \tilde{c}_{a}+\xi^{\prime}\left(\xi^{\prime}-2\right) \frac{1}{\square} \partial A \circ \partial \tilde{A} \quad a_{1}=2 \frac{\xi^{\prime}-1}{\xi^{\prime}-2}, \quad a_{2}=\frac{\xi^{\prime}}{\xi^{\prime}-2}, \quad a_{3}=-1 \\
& b_{1}=\frac{2}{(2-D)\left(2-\xi^{\prime}\right)}, \quad b_{2}=\left(\xi^{\prime}-1\right) b_{1}, \quad b_{3}=\xi^{\prime}\left(\xi^{\prime}-2\right) b_{1}
\end{aligned}
$$

Conclusions

- The tensor product of two Yang-Mills theories written in the BRST basis (A, 2c) yields exactly the field content of graviton, Kalb-Ramond 2 -form and dilaton, together with their respective ghosts (first and second generation).
- Dictionary constructs the correct action of the gravitational BRST operator on gravity fields from that of the YM BRST.
- The gravity fields derived have the correct dynamics, owing to the underlying YM equations of motion. This holds for any gauge-fixing parameter and, as a by-product, map between different gauges.
- Formalism is automatically anti-BRST covariant as well (both YM and gravity sides). This is a general property due to linearity of gauge-fixing functional. Importantly, antiBRST is anti-commuting with BRST on all fields.
- Tensoring two YM over (A, 2c, b) induces spurious Weyl scaling invariance?

Thank you!

