$D=6, \mathcal{N}=(2,0)$ and $\mathcal{N}=(4,0)$ theories

Leron Borsten

Dublin Institute for Advanced Studies

Geometry, Duality and Strings 2018, May 23-26 Murcia, Spain

Introduction I: The $(4,0)$ Conjecture

- It was at one time thought that non-trivial conformal quantum field theories exist in at most $D=4$ spacetime dimensions
- At odds with Nahm's '77 classification, which includes $D=6$ superconformal algebras
- M-theory: existence of non-trivial $D=6$ quantum field theories with $\mathcal{N}=(2,0)$ supersymmetry and $\mathrm{OSp}^{\star}(8 \mid 4)$ superconformal symmetry [Gunaydin, Warner '84, Duff, Blencowe '87; Witten '95; Strominger '95; Maldacena '97]
- Consistency of superalgebra does not imply a corresponding non-trivial quantum field theory exists, e.g [Cordova, Intrilligator '16]
- However, taking confidence from the $(2,0)$ story it is tempting to speculate that the $D=6, \mathcal{N}=(4,0)$ multiplet with $\mathrm{OSp}^{\star}(8 \mid 8)$ superconformal symmetry, a longstanding and enticing outpost of Nahm's taxonomy, should also correspond to a non-trivial quantum theory

Introduction I: The $(4,0)$ Conjecture

- Hull argued that a non-trivial " $(4,0)$ theory" may arise in the large $D=5$ Plank length, I_{5}, limit of M-theory compactified on 6-torus
[Hull '00]
- Warning: highly speculative. For example, we have no M-brane construction supporting its existence
- As emphasised by Hull, the $(4,0)$ theory would constitute the maximally symmetric phase of M-theory
- Moreover, it contains a self-dual "gravi-gerbe" field, suggestive of a $D=6$ chiral theory of conformal gravity.
- Establishing its existence would have profound implications for not only M-theory, but also gravity more broadly understood

Introduction II: Gravity $=$ Gauge \times Gauge

- Here we re-examine the free $(4,0)$ theory from another, a priori unrelated, but equally provocative, perspective:

$$
\text { "gravity }=\text { gauge } \times \text { gauge" }
$$

- The scattering amplitudes of (super)gravity are conjectured to be the "double-copy" of (super) Yang-Mills amplitudes to all orders in perturbation theory!
[Bern, Carrasco, Johansson '08, Bern10ue, Bern:2010yg]
- These fascinating amplitude relations are both computationally expedient and conceptually suggestive, facilitating previously intractable calculations
- Probe profound questions regarding the deep structure of perturbative quantum gravity

Introduction II: Gravity $=$ Gauge \times Gauge

- In this context $D=5, \mathcal{N}=8$ supergravity, the low energy limit of M-theory on a 6-torus, is the double-copy of $D=5, \mathcal{N}=4$ super Yang-Mills theory
- M-theory uplift: $(2,0)$ theory compactified on a circle of radius $R \propto g_{Y M}^{2}$
- Can we formulate $(4,0)=(2,0) \times(2,0)$, morally the M-theory uplift of gravity $=$ gauge \times gauge?
[Chiodaroli, Günaydin, Roiban '11; Anastasiou, LB, Duff, Hughes, Nagy '13]
- Intrinsically non-perturbative nature of the $(2,0)$ theories makes amplitude relations hard to formulate, although there exist some limited tests [Huang, Lipstein '10r, Czech, Rozali '11]
- Avoid this hurdle by appealing to a complementary and independent off-shell field-theoretic realisation of gravity as the "square of Yang-Mills" [Anastasiou, LB, Duff, Hughes, Nagy '13; LB '17]

Plan

I: Review of Gravity $=$ "Gauge \times Gauge" paradigm

II: Review of $\mathcal{N}=(2,0)$ and $\mathcal{N}=(4,0)$ superconformal theories in $D=6$

III: $(2,0) \times(2,0)=(4,0)$

IV: Conclusions and future directions

Part I

The "Gravity $=$ Gauge \times Gauge" paradigm

Gravity and gauge theory

- Gravity as a gauge theory?
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence ['t Hooft '93; Susskind '94; Maldacena '97]

Gravity and gauge theory

- Gravity as a gauge theory?
- Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
- Holographic principle - AdS/CFT correspondence ['t Hooft '93; Susskind '94; Maldacena '97]
- Here, we appeal to a third and (superficially) independent perspective:

$$
\text { Gravity }=\text { Gauge } \times \text { Gauge }
$$

- The theme of gravity as the "square" of Yang-Mills has appeared in a variety of guises going back to the KLT relations of string theory [Kawai-Lewellen-Tye '85]

Bern-Carrasco-Johansson colour-kinematic duality

- Color-dressed n-point tree amplitude of Yang-Mills theory:

$$
A_{n}^{\text {tree }}=\sum_{i \in \text { trivalent graphs }} \frac{c_{i} n_{i}}{\prod_{a_{i}} p_{a_{i}}^{2}}
$$

Bern-Carrasco-Johansson colour-kinematic duality

- Color-dressed n-point tree amplitude of Yang-Mills theory:

$$
A_{n}^{\text {tree }}=\sum_{i \in \text { trivalent graphs }} \frac{c_{i} n_{i}}{\prod_{a_{i}} p_{\mathrm{a}_{i}}^{2}}
$$

- There is a representation of $A_{n}^{\text {tree }}$ such that

$$
c_{i}+c_{j}+c_{k}=0 \Leftrightarrow n_{i}+n_{j}+n_{k}=0
$$

(invoking generalised gauge transformations if necessary)
[Bern, Dennen, Huang, Kiermaier '10]

Bern-Carrasco-Johansson colour-kinematic duality

- Color-dressed n-point tree amplitude of Yang-Mills theory:

$$
A_{n}^{\text {tree }}=\sum_{i \in \text { trivalent graphs }} \frac{c_{i} n_{i}}{\prod_{a_{i}} p_{\mathrm{a}_{i}}^{2}}
$$

- There is a representation of $A_{n}^{\text {tree }}$ such that

$$
c_{i}+c_{j}+c_{k}=0 \Leftrightarrow n_{i}+n_{j}+n_{k}=0
$$

(invoking generalised gauge transformations if necessary)
[Bern, Dennen, Huang, Kiermaier '10]

- Conjectured to hold at loop level [Bern, Carrasco, Johansson '08, '10]

The BCJ double-copy prescription

- BCJ colour-kinematic duality and the double-copy prescription:

The BCJ double-copy: generalisations

- Replace kinematics with colour: ϕ^{3}-theory plays a crucial role (more on this later)
[Hodges '11; Cachazo, He, Yuan '13 '14, Dolan, Goddard '13; Naculich '14 '15, ...]

$$
\underbrace{\sum_{i} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D} S_{i}} \frac{c_{i} n_{i}}{\prod_{a_{i}} p_{a_{i}}^{2}}}_{\text {gauge theory amplitude }} \underbrace{\longrightarrow}_{n_{i} \rightarrow \tilde{c}_{i}} \underbrace{\sum_{i} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D} S_{i}} \frac{c_{i} \tilde{c}_{i}}{\prod_{a_{i}} p_{a_{i}}^{2}}}_{\phi^{3} \text { amplitude }}
$$

The BCJ double-copy: generalisations

- Replace kinematics with colour: ϕ^{3}-theory plays a crucial role (more on this later)
[Hodges '11; Cachazo, He, Yuan '13 '14, Dolan, Goddard '13; Naculich '14 '15, ...]

$$
\underbrace{\sum_{i} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D} S_{i}} \frac{c_{i} n_{i}}{\prod_{a_{i}} p_{a_{i}}^{2}}}_{\text {gauge theory amplitude }} \underbrace{\longrightarrow}_{n_{i} \rightarrow \tilde{c}_{i}} \underbrace{\sum_{i} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D} S_{i}} \frac{c_{i} \tilde{c}_{i}}{\prod_{a_{i}} p_{a_{i}}^{2}}}_{\phi^{3} \text { amplitude }}
$$

Inputs: Matter-coupled (super) Yang-Mills, $D=3$ Chern-Simons-Matter, QCD, Higgsed theories, Z-theory, (DF) ${ }^{2}$ theories ...

Outputs: Maxwell/scalar/Yang-Mills supergravities, gauged supergravities (Minkowski vacua), NLSM, pure gravity, ϕ^{3}-theory, Born-Infeld, conformal gravity, string theories ...
[Cachazo, He, Yuan '13 '14; Chiodaroli et al '14 '15; Johansson, Ochirov '15 '16; Carrasco, Mafra,
Schlotterer '16; Johansson, Nohle '17; Azevedo, Chiodaroli, Johansson, Schlotterer '18...]

The power of BCJ

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '18]

The power of BCJ

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]

The power of BCJ

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" (Bjornsson and Green)

The power of BCJ

- Conceptually compelling and computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite)
[Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng '18]
- Can be explained by supersymmetry and $E_{7(7)}$ U-duality [Bjornsson-Green '10, Bossard-Howe-Stelle '11; Elvang-Freedman-Kiermaier '11; Bossard-Howe-Stelle-Vanhove '11]
- At 7 loops any would-be cancellations are "not consequences of supersymmetry in any conventional sense" (Bjornsson and Green)
- $D=4, \mathcal{N}=5$ supergravity finite to 4 loops, contrary to expectations:

> "Enhanced" cancellations

No such cancellations seen for $\mathcal{N}=8$ supergravity at 5 loops: implications unclear
[Bern-Davies-Dennen '14; Bern et al '18]

Understanding Amplitudes

- String theory: monodromy \rightarrow BCJ relations, manifest BCJ duality, double, copies, loops, Z-theory
[Bjerrum-Bohr, Damgaard, Vanhove '09; Stieberger '09; Mafra, Schlotterer, Stieberger '11; Broedel, Dixon '12; Broedel, Schlotterer, Stieberger '13; Mafra, Schlotterer '14 '15; Carrasco, Mafra, Schlotterer '17. . .]
- Twistor theory: Ambitwistor theories \rightarrow scattering equations, loops on the (nodal) Riemann sphere, non-flat backgrounds. . .
[Mason, Skinner '13; Adamo, Casali, Skinner '13; Casali, Tourkine '14; Geyer, Mason, Monteiro, Tourkine '15; Adamo, Casali, Mason, Nekovar '17; Geyer, Monteiro '18. . .]
- Extended supergravity: matter couplings, U-dualities, factorised orbifold projections, gaugings, anomalies...
[Carrasco, Chiodaroli, Gunaydin, Roiban '12; Chiodaroli, Gunaydin, Johansson, Roiban '14 '15; Carrasco, Kallosh, Roiban, Tseytlin '13; Zvi, Cheung, Chi, Davies, Dixon, Nohle '15 ...]
- Classical understanding: kinematic algebras, Drinfield double, classical solutions ...
[Monteiro, O'Connell '11 '13; Bjerrum-Bohr, Damgaard, Monteiro, O'Connell '12; Monteiro, O'Connell, White '14; Fu, Krasnov '16; Cardoso, Nagy, Nampuri '16, '17; Luna, Monteiro, Nicholson, Ochirov, O'Connell, Westerberg, White '17...]

Questions raised by BCJ

How far?

- Does the BCJ duality hold for all loops?
- Are all supergravity theories "double-copy constructible"?

How deep?

- Is the double-copy paradigm limited to amplitudes?
- To what extent can one regard gravity as the square of Yang-Mills?

Field theoretic dictionary

Taking a step back

- Amplitudes structures revealed by going on-shell - can we now understand their origins?

Field theoretic dictionary

Taking a step back

- Amplitudes structures revealed by going on-shell - can we now understand their origins?

Field theory formulation of "Gauge \times Gauge"

- Field theory product

$$
A \circ \tilde{A}:=A^{a} \cdot \Phi_{a \tilde{a}} \cdot \tilde{A}^{\tilde{a}},
$$

where

$$
[f \cdot g](x)=\int d^{D} y f(y) g(x-y)
$$

- Here, Φ is a "spectator" $G \times \tilde{G}$ bi-adjoint scalar field

Basic Properties of Product

- The convolution reflects the fact that the amplitude relations are multiplicative in momentum space
- Essential for reproducing the local symmetries of (super)gravity from those of the two (super) Yang-Mills factors

Basic Properties of Product

- The convolution reflects the fact that the amplitude relations are multiplicative in momentum space
- Essential for reproducing the local symmetries of (super)gravity from those of the two (super) Yang-Mills factors
- The Killing form accounts for the gauge groups, while the spectator field allows for arbitrary and independent G and \tilde{G}
- The appearance of Φ is quite natural from various perspectives [Hodges '11; Cachazo, He, Yuan '13 '14, Monteiro, O'Connell, White '14]

Classifying Double-Copy Constructible Supergravity Theories

- The field theoretic product maps gauge theory content \& symmetries to gravitational content \& symmetries
- Generates large class of "factorisable" (super)gravities: all $\mathcal{N} \geq 2$ for $3 \leq D \leq 10$ with homogeneous scalar manifolds, with just two exceptions! [Anastasiou, LB, Duff, Marrani, Nagy, Zoccali '17]
- Agrees with all known BCJ double-copy constructible theories: for example cf. [Chiodaroli, Günaydin, Johansson, Roiban '16]

Beyond supergravity: speculations on $(2,0)$ squared

$$
(D=5, \mathcal{N}=4 \mathrm{SYM})^{2} \longrightarrow \text { square } D=5, \mathcal{N}=8 \text { sugra }
$$

Beyond supergravity: speculations on $(2,0)$ squared

Part II

$$
\mathcal{N}=(4,0) \text { superconformal theories in } D=6
$$

The $(4,0)$ conjecture (be warned - highly speculative)

- Maximally supersymmetric $D=5, \mathcal{N}=8$ supergravity has USp(8) R-symmetry and an exceptional non-compact global $E_{6(6)}(\mathbb{R})$
- Its massless fields include 27 one-form Abelian gauge potentials in the fundamental 27 of $E_{6(6)}$
- Hull considered a large I_{5} limit under the assumption that the $E_{6(6)}$ is preserved and all supersymmetric states are protected

The $(4,0)$ conjecture (be warned - highly speculative)

- Decompose $\mathcal{N}=8$ multiplet under $\mathcal{N}=4$ subalgebra: five $\mathcal{N}=4$ Abelian gauge multiplets with coupling constant $g^{2}=I_{5}$
- Each lifts to an Abelian $(2,0)$ theory as $I_{5} \rightarrow \infty$, where $g^{2}=I_{5}=R$
- $E_{6(6)}$ preserved \Rightarrow all 27 one-forms lift to two-forms
- Supersymmetries \Rightarrow the entire $\mathcal{N}=8$ supergravity lifts to a $D=6$ theory, where I_{5} is identified with R such that the $I_{5} \rightarrow \infty$ limit is conformal
- We therefore require a superconformal gravitational theory in $D=6$ dimensions, consistent with a global $E_{6(6)}$ symmetry, that yields $D=5, \mathcal{N}=8$ supergravity when compactified on a circle
- According to Nahm's classification there is a unique candidate satisfying these criteria: the $(4,0)$ theory

The free $(4,0)$ theory

- The free $(4,0)$ theory introduced in [Hull '00] consists of:

$$
8 \psi_{\mu \nu}^{A}, \quad 27 B_{\mu \nu}^{[A B]}, \quad 48 \lambda^{[A B C]}, \quad 42 \phi^{[A B C D]}
$$

transforming respectively as the $\mathbf{8 , 2 7}, 48$ and 42 of $\mathrm{USp}(8)$

The free $(4,0)$ theory

- The free $(4,0)$ theory introduced in [Hull '00] consists of:

$$
8 \psi_{\mu \nu}^{A}, \quad 27 B_{\mu \nu}^{[A B]}, \quad 48 \lambda^{[A B C]}, \quad 42 \phi^{[A B C D]}
$$

transforming respectively as the $8,27,48$ and 42 of USp(8)

- Finally, rather than a graviton there is a rank four tensor,

$$
G_{\mu \nu \rho \sigma}=G_{[\mu \nu][\rho \sigma]}=G_{[\rho \sigma][\mu \nu]}, \quad G_{[\mu \nu \rho] \sigma}=0
$$

which might be thought of as a "gravi-gerbe" field
[Mason, Reid-Edwards '11]

- It transforms under generalise gauge transformations,

$$
\delta G_{\mu \nu \rho \sigma}=\partial_{[\mu} \xi_{\nu] \rho \sigma}+\partial_{[\rho} \xi_{\sigma] \mu \nu}-2 \partial_{[\mu} \xi_{\nu \rho \sigma]}
$$

The free $(4,0)$ theory

- It has a rank six generalised gauge invariant field strength,

$$
R_{\mu \nu \rho \sigma \tau \lambda}=9 \partial_{[\mu} G_{\nu \rho][\sigma \tau, \lambda]}=R_{\sigma \tau \lambda \mu \nu \rho}, \quad R_{[\mu \nu \rho \sigma] \tau \lambda}=\partial_{[\kappa} R_{\mu \nu \rho] \sigma \tau \lambda}=0 .
$$

- The natural free field equation, $R^{\mu}{ }_{\nu \rho \mu \tau \lambda}=0$, describes ten on-shell degrees of freedom in the $(\mathbf{5}, \mathbf{1})+(\mathbf{1}, 5)$.
- This is reduced to the chiral $(5,1)$ representation by the self-duality relation

$$
R=\star R=R \star
$$

- On a circle yields a single $D=5$ graviton: the $(4,0)$ theory is gravitational, but does not contain a graviton.
- There exists a a local variational principle, breaking manifest covariance, for the complete $(4,0)$ theory

Part III

$(2,0) \times(2,0)=(4,0)$

$D=6$ on-shell multiplet squared and global symmetries

- Product of on-shell $(2,0)$ tensor multiplets yields on-shell $(4,0)$ multiplet
$[(2,0)$ on-shell states $] \times[(2,0)$ on-shell states $]=[(4,0)$ on-shell states $]$
with R-symmetry and U-duality, e.g.

$$
\phi \in E_{6(6)} / \operatorname{USp}(8) \quad \text { and } \quad B_{\mu \nu} \quad \text { in } 27
$$

[Strathdee de '86; Chiodaroli, Gunaydin, Roiban '11; Anastasiou, LB, Duff, Hughes, Nagy '13]

The Free $(2,0)$ Theory Squared

- In direct analogy with the Yang-Mills case we apply the field theoretic product:

$$
\mathcal{G}_{\mu \nu \rho \sigma}:=B_{\mu \nu} \circ \tilde{B}_{\rho \sigma} .
$$

- Consider BRST variation δ

$$
\begin{aligned}
\delta \mathcal{G}_{\mu \nu \rho \sigma} & =\delta B_{\mu \nu} \circ \tilde{B}_{\rho \sigma}+B_{\mu \nu} \circ \delta \tilde{B}_{\rho \sigma} \\
& =2 \partial_{[\mu} C_{\nu] \rho \sigma}^{(\mathbf{1 0})}+2 \partial_{[\rho} C_{\sigma] \mu \nu}^{(0 \mathbf{1})},
\end{aligned}
$$

- Ghost field dictionary

$$
C_{\nu \rho \sigma}^{(\mathbf{1 0})}=C_{\nu} \circ \tilde{B}_{\rho \sigma}, \quad C_{\sigma \mu \nu}^{(\mathbf{0 1})}=B_{\mu \nu} \circ \tilde{C}_{\sigma} .
$$

The Free $(2,0)$ Theory Squared

- Repeat variation until everything is annihilated

$$
\begin{aligned}
\delta C_{\nu \rho \sigma}^{(10)} & =\partial_{\nu} C_{\rho \sigma}^{(20)}-2 \partial_{[\rho} C_{|\nu| \sigma]}^{(\mathbf{1 1)}} \\
\delta C_{\nu \rho \sigma}^{(01)} & =\partial_{\nu} C_{\rho \sigma}^{(02)}+2 \partial_{[\rho} C_{\sigma] \nu}^{(\mathbf{1 1})} \\
\delta C_{\rho \sigma}^{(11)} & =\partial_{\rho} C_{\sigma}^{(21)}-\partial_{\sigma} C_{\rho}^{(12)} \\
\delta C_{\rho \sigma}^{(20)} & =2 \partial_{[\rho} C_{\sigma]}^{(21)} \\
\delta C_{\rho \sigma}^{(02)} & =2 \partial_{[\rho} C_{\sigma]}^{(12)} \\
\delta C_{\rho}^{(21)} & =\partial_{\rho} C^{(22)} \\
\delta C_{\rho}^{(12)} & =\partial_{\rho} C^{(22)}
\end{aligned}
$$

where we have introduced ghost-for-ghosts dictionary

$$
\begin{gathered}
C_{\rho \sigma}^{(20)}=C \circ \tilde{B}_{\rho \sigma}, \quad C_{\rho \sigma}^{(11)}=C_{\rho} \circ \tilde{C}_{\sigma}, \quad C_{\rho \sigma}^{(02)}=B_{\rho \sigma} \circ \tilde{C} ; \\
C_{\rho}^{(21)}=C \circ \tilde{C}_{\rho}, \quad C_{\rho}^{(12)}=C_{\rho} \circ \tilde{C} ; \\
C^{(\mathbf{2 2})}=C \circ \tilde{C} .
\end{gathered}
$$

- Removes $125=(90+90)-(15+15+36)+(6+6)-1$ components from \mathcal{G}, leaving 100 off-shell degrees of freedom as expected

The Free $(2,0)$ Theory Squared

- Let us now define the irreducible $\mathrm{GL}(6, \mathbb{R})$ representations,

$$
\begin{aligned}
G_{\mu \nu \rho \sigma} & =\frac{1}{2}\left(\mathcal{G}_{\mu \nu \rho \sigma}+\mathcal{G}_{\rho \sigma \mu \nu}\right)-\mathcal{G}_{[\mu \nu \rho \sigma]}, \\
\Phi_{\mu \nu \rho \sigma} & =\mathcal{G}_{[\mu \nu \rho \sigma]}, \\
\mathcal{B}_{\mu \nu \rho \sigma} & =\frac{1}{2}\left(\mathcal{G}_{\mu \nu \rho \sigma}-\mathcal{G}_{\rho \sigma \mu \nu}\right),
\end{aligned}
$$

transforming as $\mathbf{1}+\mathbf{2 0}+\mathbf{8 4}, \mathbf{1 5}$ and $\mathbf{1 5}+\mathbf{4 5}+\overline{\mathbf{4 5}}$ of $\operatorname{Spin}(1,5)$

- Concentrating on $G_{\mu \nu \rho \sigma}$ we find we obtain

$$
\begin{gathered}
\delta G_{\mu \nu \rho \sigma}=\partial_{[\mu} \xi_{\nu] \rho \sigma}+\partial_{[\rho} \xi_{\sigma] \mu \nu}-2 \partial_{[\mu} \xi_{\nu \rho \sigma]}, \quad \xi_{\nu \rho \sigma}:=C_{\nu \rho \sigma}^{(\mathbf{1 0})}+C_{\nu \rho \sigma}^{(01)} . \\
\delta \zeta_{\nu \rho \sigma}=\partial_{\nu} \zeta_{\rho \sigma}+\partial_{[\sigma} \zeta_{\rho] \mu}, \quad \delta \zeta_{\rho \sigma}=0, \\
\text { where } \zeta_{\nu \rho \sigma}=\xi_{\nu \rho \sigma}-\xi_{[\nu \rho \sigma]}, \zeta_{\rho \sigma}:=3\left(C_{\rho \sigma}^{(20)}+C_{\rho \sigma}^{(02)}-2 C_{[\rho \sigma]}^{(\mathbf{1 1)})}\right) / 8
\end{gathered}
$$

- \longrightarrow generalised gauge transformations of gravi-gerbe

The Free $(2,0)$ Theory Squared

- Dual scalar $\Phi_{\mu \nu \rho \sigma}$:

$$
\begin{gathered}
\delta \Phi_{\mu \nu \rho \sigma}=4 \partial_{[\mu} \Lambda_{\nu \rho \sigma]}, \quad \delta \Lambda_{\nu \rho \sigma}=3 \partial_{[\nu} \Lambda_{\rho \sigma]} \\
\delta \Lambda_{\rho \sigma}=2 \partial_{[\rho} \Lambda_{\sigma]}, \quad \delta \Lambda_{\sigma}=\partial_{\sigma} \Lambda
\end{gathered}
$$

where $\Lambda_{\nu \rho \sigma}=\xi_{[\nu \rho \sigma]}, \Lambda_{\rho \sigma}=\xi_{[\rho \sigma]}+2 C_{[\rho \sigma]}^{(11)}, \Lambda_{\sigma}=3\left(C_{\sigma}^{(21)}+C_{\sigma}^{(12)}\right) / 2$ and $\Lambda=3 C^{(22)} / 2$

- Dual two-form $\mathcal{B}_{\mu \nu \rho \sigma}$:

$$
\begin{gathered}
\delta \mathcal{B}_{\mu \nu \rho \sigma}=\partial_{[\mu} \alpha_{\nu] \rho \sigma}-\partial_{[\rho} \alpha_{\sigma] \mu \nu}, \\
\delta \alpha_{\nu \rho \sigma}=\partial_{\nu} \alpha_{\rho \sigma}-2 \partial_{[\rho} \beta_{\sigma] \nu}, \\
\delta \alpha_{\rho \sigma}=2 \partial_{[\rho} \alpha_{\sigma]}, \quad \delta \beta_{\sigma \nu}=2 \partial_{(\sigma} \alpha_{\nu)}, \\
\text { where } \alpha_{\nu \rho \sigma}:=C_{\nu \rho \sigma}^{(\mathbf{1 0})}-C_{\nu \rho \sigma}^{(0 \mathbf{0 1})}, \alpha_{\rho \sigma}:=C_{\rho \sigma}^{(\mathbf{2 0})}-C_{\rho \sigma}^{(02)}, \alpha_{\sigma}:=C_{\sigma}^{(\mathbf{2 1})}-C_{\sigma}^{(\mathbf{1 2})} \text { and } \\
\beta_{\rho \sigma}:=2 C_{(\rho \sigma)}^{(\mathbf{1 1})} .
\end{gathered}
$$

The Free $(2,0)$ Theory Squared

- Applying global supersymmetries to the factors the rest of the $(4,0)$ multiplet follows
- For example, the eight two-form gravitini

$$
\Psi_{\mu \nu} \sim\left(\chi \circ \tilde{B}_{\mu \nu}, B_{\mu \nu} \circ \tilde{\chi}\right)
$$

- The super-BRST variation

$$
\delta \Psi_{\mu \nu}=2 \partial_{[\mu} \eta_{\nu]}
$$

is generated by the left/right two-form transformations, where the bosonic spinor-vector ghosts η_{ν} are identified with $\chi \circ \tilde{C}_{\nu}$ and $C_{\nu} \circ \tilde{\chi}$

- By going first to physical gauge the equations of motion it is simple to verify that all Bianchi identities and self-dualities relations for the free $(4,0)$ theory follow straightforwardly from those of the $(2,0)$ factors

All (free) roads lead to $(4,0)$

Gravitational S-duality?

- The generalised gauge invariant gravi-gerbe curvature

$$
\mathcal{R}_{\mu \nu \rho \sigma \tau \lambda}=9 \partial_{[\mu} \mathcal{G}_{\nu \rho[[\tau \lambda, \sigma]}=H_{\mu \nu \rho} \circ \tilde{H}_{\sigma \tau \lambda} .
$$

so that $H=\star H, \tilde{H}=\star \tilde{H}, d H=d \tilde{H}=0$ implies

$$
\mathcal{R}=\star \mathcal{R}=\mathcal{R} \star \quad \partial_{[\mu} \mathcal{R}_{\nu \rho \sigma] \tau \lambda \kappa}=\partial_{[\kappa} \mathcal{R}_{|\mu \nu \rho| \sigma \tau \lambda]}=0
$$

- Recall: a $D=6$ Abelian two-form with self-dual field strength on T^{2} yields an $\operatorname{SL}(2, \mathbb{Z})$ doublet:

$$
F^{i}=\star F^{j} \varepsilon_{j k} \gamma^{k i}
$$

- Implies there exists an $\operatorname{SL}(2, \mathbb{Z})$ triplet of $D=4$ linearised Riemann tensors:

$$
\mathcal{R}^{(j)} \sim F^{(i} \circ \tilde{F}^{j)}
$$

obeying the duality constraint $\mathcal{R}^{(i j)}=\star \mathcal{R}^{(k j)} \varepsilon_{j k} \gamma^{k i}$

Gravitational S-duality?

- The free $(4,0)$ theory compactified on T^{2} yields linear $\mathcal{N}=8$ supergravity, with an $\operatorname{SL}(2, \mathbb{Z})$ symmetry acting on a triplet of duality related gravitational field-strengths
[Hull '00]
- Here: the "square" of the familiar $\operatorname{SL}(2, \mathbb{Z})$ of the Abelian $(2,0)$ multiplet compactified on T^{2}
- Of course, this symmetry is broken by interactions
- Not necessarily an argument against its existence; it simply tells us that it is not a symmetry of classical $\mathcal{N}=8$ supergravity, just as S -duality is not a symmetry of classical $\mathcal{N}=4$ super Yang-Mills theory
- Not contained in the familiar $E_{7(7)}$!
- Warning: highly speculative

Conclusions and Future Directions

Conclusions

- The free $(4,0)$ theory (local/global symmetries, eom, Bianchi identities and self-duality) is generated by the product of two free $(2,0)$ theories:

$$
\text { free }(2,0) \times \text { free }(2,0)=\text { free }(4,0)
$$

- The hope: this new perspective provides a guide as how to proceed in the non-linear case - hard!

Conclusions

- A natural setting for such a question is higher gauge theory: promising progress in higher gauge $(2,0)$ models
[Baez '10; Saemann, Schmidt '17]
- The $(4,0)$ theory will require new structures, gravitational analogs of the $(2,0)$ models - higher chiral conformal metric on two-forms
- Here we have an extra input to guide our considerations: the $(4,0)$ higher gauge theory will be required to be consistent with the square of the $(2,0)$ theory
- First step: PST action and fake curvature for free gravi-gerbe [LB to appear]

Conclusions

Thank you for listening!

