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Introduction

In developments of the AdS/CFT correspondence,
the integrable structure has played an important role.

AdS/CFT, | .

L AdS: x S° superstring 4==) N=4 super Yang-Mills
W,

Techniques of integrability are very powerful tools to
compute various physical observables.

Energy spectrum of a string / Anomalous dimension of a local op.

« Three point functions

— Question

The techniques are also valid for the systems with
lower supersymmetries or no conformal symmetry ?




Introduction

To find extensions of the well-studied AdS: x S°case,
integrable deformations of the AdS: x S® superstring have been studied.

— Yang-Baxter (YB) deformations [Klimcik, 2002,2008]

A systematic way of describing integrable deformations of 2d NLSM

The deformations are characterized by rmatrices (sol. of the CYBE)

YB def. | ¢ 9gravity duals of NCYM with [2#, 2"] = 1©*"

[Hashimoto-Itzhaki, Maldacena-Russo, 1999]

5
S » « solutions of the generalized SUGRA eq.

with an extra vector I =10y,
[Arutyunov-Frolov-Hoare-Roiban-Tseytlin, 1511.05795]
[Orlando-Reffert-1.S.-Yoshida , 1607.00795]



Introduction

[ YB deformations can be regarded as duality transformations. }

« Non-abelian T-duality

« B-transformation

[ Hoare-Tseytlin, 1609.02550 ]
[ Borsato-Wulff, 1609.09834, 1706.10169 ]

[ J.S.-Sakatani-Yoshida, 1703.09213, 1705.07116 ]
[ J.S.-Sakatani, 1803.05903]

[ a kind of O(d,d) T-duality transformations ]

I want to clarify relations

between YB deformations and g-transformations
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1. YB deformations of the AdS: x S° superstring



The AdS: x S° superstring

The AdSs x S° superstring can be described by using the supercoset

PSU(2,24)
SO(1,4) x SO(5)

[Metsaev-Tseytlin, 9805028 ]

- Green-Schwarz (GS) action of the AdSs x S° sueperstring

S = —%/ d2o(v*F — €*P)Str [g_laag d(g_laﬁg)] g€ SU(2,2|4)

d= P+ 2P, — P3
P; (1 =0,1,2,3) : projections to the Z, -grading components g(i).

~—— Z,-grading structure N
su(2,214) =gV o gM e g @g®  [g®, g0 ] c gttt
. Blue : bosonic ~ Red : fermionic g© = s0(1,4) x so(5) )

mm) existence of a Lax pair (classically integrable)
[Bena-Polchinski-Roiban, hep-th/0305116]



YB deformations of the AdS: x S> superstring

- The action of the YB sigma model for AdS: x S°

_ 3 2 a3 a3 —1 1 —1
S’YB——Z/dJ('y — ™) Str |g aagdol—nRgodg dsg

« 171 is a deformation parameter

+ The skew-symmetric linear operator R,(z) =g 'R(grg™")g z € su(2,2/4)

[ r-matrix : r = %TijTi AT, wp R(r)=rT; >l o) ]

The classical Yang-Baxter equation
R(z), R(y)] — R(|[R(z), y| + [z, R(y)]) =0

« The existence of a Lax pair s===) Integrable deformations
[Kawaguchi-Matsumoto-Yoshida,1401.4855]



YB deformations of the AdS: x S> superstring

- The action of the YB sigma model for AdS: x S°

_ 3 2 a3 a3 —1 1 —1
S’YB——4/d o (v4F — ™) Str [g aagdo[l—nRgod dsg

« 171 is a deformation parameter

+ The skew-symmetric linear operator R,(z) =g 'R(grg™")g z € su(2,2/4)

[ r-matrix : r = %TijTi AT, wp R(r)=rT; >l o) ]

The classical Yang-Baxter equation
R(z), R(y)] — R(|[R(z), y| + [z, R(y)]) =0

« The existence of a Lax pair s===) Integrable deformations
[Kawaguchi-Matsumoto-Yoshida,1401.4855]



Outline of the supercoset construction

1. We take a parametrization of a group element

[ g=gp-g5 € SU(2,2|4) ]

Q'0r = (Q*) 01aa
) : o Ji (I=1,2;a,6=1,...,4)
gp . the bosonic part gr =exp(Q'0;5), 9, + 100 MW fermions
2. Syp is expanded by 0;; Sy = S(g) + S2) + O(6%).
3. We compare Syp with the canonical form of the GS action.

_ The canonical form of the GS action [Cvetic-Lu-Pope-Stelle, 9907202]

SYB — —T/d2 [ aﬁ gmn —I_an]a Xma Xn i 0(90)

+i P%%01e0Ta Dy 301 +i P*POse, " TuD_50, |
1 _ i 0(62)

~oB 4 ¢ 1 (

9 4

1 1
w® 4 _echab) | S F = Z —‘Fal...anral an

2 n!
n=1,3,5,7,9
10



2. YB deformations as pg-transformations



Metric and B-field

[ Assumption : a r-matrix only contains bosonic generators of su(2,2(4). }

The deformed action at O(6") is

1
1 -2nR, o Py

S(O) = —T/ d?o PSBStr [gb_laagb P o gb_laggb}

The left-invariant current can be expanded as

1 e, b+ AdS. x S° vielbein
szldgb = (emaPa — —wmabJab) dXx™ [ i ) ]

2 Wy, ®P : Spin connection
{Jan} ®{Pu} = 0V ® g = 50(2,4) x 50(6) C su(2,2/4)= gV @ gV & g* @ g
In addition, we need to compute

Str(P°R,, (P,)) = A"

12



Metric and B-field

We can obtain the YB deformed metric and B-field

a

/ _ a b / _ b
I9mn — €(m ©En) k—l—ab ; an — €[lm En] ktab

where ki,” = [(1+ Qn)\)—l]a .

To understand connections with O(d,d) transformations,
it is useful to introduce the generalized metric H in the DFT.

—Bg ' B)mn Bk g""
HMN = 9 mng ) o)
—4g kn g

13



Metric and B-field

YB deformations can be regarded as O(d,d) T-duality transformations.

1 — BB f = (? B;R) € 0(10,10)

where the g-field is
B (x) = 2n rijTimTjn
( T; : Killing vectors associated with T} € 50(2,4) x 50(6)]

» The transformations are (local) p-transformations
in the context of double field theory.

14



R-R fields and Dilaton

After lengthy calculations,
we can obtain the canonical GS action at O(©?) :

S(2) = —z’T/dQJ{ PYP0) e, T D), 0] + P** el T, D’ 46

1 _ -
_ gPiﬁ@ie’aaFe’Bbe@'é]
*

YB-deformed RR fields and dilaton

4 )

Fs =4 (I‘01234 i I‘56789) , The undeformed R-R 5-form fields

Q= (det k_)3 Nayas = Nagy_yag, IO 927
' 12 2p—1UWU2p
\_ p=0 2Pp! _J

15



R-R fields and Dilaton

As a result, YB deformed R-R fields and dilaton are given by

e F = F0, e = (det k4 )t/?

We can show that the formulas of the RR fields can be rewritten by

F'=e Bz/\e JBVFE) [ BV o, = 5,8 Lin b Ot ]
F5 = 4(wads,; + wss) WAdSs ,Ws5 : AdSs, S5 volume forms
/ /
F = Z Fp
p:1?375?739

- The transformation is precisely the g-transformation
of R-R fields. [Hohm-kwak-zwiebach, 1107.0008]

16



3. An example of g-transformations



An example of g-transformations

: . 1
Abelian r-matrix : r = §P1 A Py

Py, P] =0

B-field : B=nPL AP, =100, Ay

[Matsumoto-Yoshida, 1404.3657]

We take a coordinate system for the AdS< part of the original metric as

s Nudatdz” + dz?

dS 5 +d8285 (Mayzoalazag)
z
By performing B (or YB) deformations, we obtain
2 _ 0\2 3\2 2 12 2)2
gs? — dz® — (da")* + (dz®) L7 [(dzt)? + (dz®)?] T ds?,
2 -4 + r,72
By = — ' dz! A da? CI)—1 lo 2
2_24_'_?72 ? _2 g2’4+?72 )

This b.g. is a gravity dual of NC SYM with [2",2%] =in .

[Hashimoto-Itzhaki, Maldacena-Russo, 1999]

18



An example of g-transformations

dz? Ada! Ada? Ada® Adz J

20

original: [ Fs =14 (WAdS5 +ws5) Wads, = —

STEP1: e ?VF;=4 (wAds5 -I-ws5) — 48V wads,
dz® A dz? A dz

20

= 4 (wads, +wss) — 47

STEP2: F' = ¢ Bare=BVE,
dz A dz3 A dz

9

Z4
+4 (24 e WAdSs -I—OJS5) —4B§/\w55

= 4p

dz? A daz3 A dz

»9

24
: Fé =4 (—wAdS5 —I—ws5) ,

F{ =0, Fy=—4n A2

F) = —4B) Awgs,  F,=0

)

The resulting background is a solution of the type IIB SUGRA.



We showed that YB deformations can be regarded as the p-transformations.

In general,

The p-transformations are not a gauge transformation in the SUGRA.

.

kThe p -deformed b.g. may not satisfy the (generalized) SUGRA eq. D

However,

The p-transformation with a r-matrix satisfying the CYBE can
systematically generate sol. of the (generalized) SUGRA eq.

20



Summary

- We considered YB-deformations of the AdSc x S> superstring.

[ Integrable deformations ]

(

-

YB deformations

1
'r’zﬁrlf"Ti/\Tj

~

J

\_

p-deformations

BT () = 21 TijTimTf

J

- We considered the p-deformations of the AdS; x S3 x T* with H-flux.

Discussions

[ J.S5.-Sakatani, 1803.05903]

« YB deformations can also be regarded as the NATD.
[ Hoare-Tseytlin, 1609.02550 ] [ Borsato-Wulff, 1609.09834, 1706.10169 ]

=)

« Dual gauge theories

Formulations of DFT and the Double sigma models
manifesting the symmetry of the NATD ?

» Noncommutative gauge theories ?

[Araujo-Bakhmatov-O Colgain-].S.-Sheikh Jabbari-Yoshida, 1702.02861, 1705.02063]

| T-duality transformations ]



Thank you



Appendix



[-deformations of the AdS; x S3 x T* superstring

In the presence of H-flux,
it is not straightforward to define YB sigma models.

However, we can consider p-deformations of such backgrounds, easily.

As an example, we here consider the AdS; x S3 x T* with H-flux :

. dz®)? + (dz')* + d2? .
ds® = (e’ Ez I fl.‘:‘;;;!_ 1 tl.uﬁ._-_.
de" Adz! 1
B, = ﬁ; | —lr'{]HHriﬂh{h'- P =1,
: 1 . : :
rl.a'_f;;,, = 1 df* + sin® 0 de?® 4 {rlt' : {‘{JHH{L’J]IE]-

24



[-deformations of the AdS; x S3 x T* superstring

1
Abelian : r= gPu NPy

We can perform g-deformations by using the r-matrix.

dz™)? + (dz'y d2® |
ds® = \ z] [ ) t — d.ﬂfa } u:].*;i-.-..
z° 427 s .
dr? A dz? 1 :
B; = — b = cosfdo A du, e ?
z*+2n 4

The background is a solution of the supergravity.

NOTE

The background can also be reproduced by a TsT transformation.

25




[-deformations of the AdS; x S3 x T* superstring

Non-unimordular : 1 = =& My A P, P = 4l

We can perform pg-deformations by using the non-unimodular r—-matrix.

2 Mypdrtdry  dz?

ds® =

(= ]

I b odsga 4 dsia, e " =
— : ’
22 =2¢,zF 22 2

dx® A dx! 1
By = —— = cosfdo Ady.
22 =2¢c, ¢ 4

The background is a solution of the generalized supergravity with

-

[=—-c'F,=—-c"d,,

L

In this case, the Killing vector I satisfies
(g+ B)mnI™ =0
Then, we can rescale I™ — A with arbitrary A € R.

26



The generalized SUGRA equations ( GSE )

[Arutyunov-Frolov-Hoare-Roiban-Tseytlin,1511.05795]

1
Ryn — 1 Huyrrer, HNEE +

1

Dy Xy + DXy =Tun,

1 1
3 DX Hpeprn + §fK-FKMN + ETMNKLP]:KLP = X" Hygpn + Dy Xn — Dy X,

1
R— —H?+UDyXM —4xyxM=0,

12

dx Fp 4 ZAxFpH*(INFp o) H3A%Fpi2=0, Fnins. =€e*Fyn,..

Xy =1+ 2y

The GSE is modified by two extra vectors I and Z.
In addition, there are some constraints for these vectors.

27



Relations between vectors X, [ and Z

The constraints are given by

4 )

Dy In +DnIy =0  (Killing equation )
DyZn —DnZy +IEHgyun =0 I™MZy =0

. J

Taking a coordinate system such that the B-field is isometric L; B = 0,

) 7 = Oy ® — BynIV

( generalization of the gradient of dilaton )

Therefore, setting I = (0, we recover the usual SUGRA equations.

The GSE is characterized by a Killing vector I = 1M,

28



