Gravitational duality and deformations of action principles
for generalized gauge fields

Sergio Hortner

Geometry, Duality and Strings Conference 2018



Outlook:
1. Review of basic notions of EM duality
2. Generalized gauge fields

3. Discussion of work in progress




1. Review of basic aspects of EM duality
i) Twisted self-duality

Maxwell equations in vacuum
0. F*Y =0
0, F*Y=0

are invariant under SO(2) duality rotations

F — F' =cosaF —sina*F
*F — *F'=sinaF +cosa*F

Fuv = 3,4, — 0,A,

Symmetry between electric and magnetic degrees of freedom.



In the previous analysis of Maxwell equations the form F has been prioritized
over its Hodge dual *F, for its equation has implicitly been solved in terms of
a potential. Its equation of motion is an identity.

F.v = 0,A,—0,AL

dF = 0
But the duality symmetry is telling that there is no necessity of prioritizing any
of these forms.

We would like to reformulate Maxwell equations in such a way that F and *F
are treated on an equal footing.



This is achieved by solving for F and *F, considered as independent fields
F=dA, H="F=dB

and then replacing the second-order equations by the first-order twisted
self-duality condition

with

0 1
=(% o)
Redundancy in the covariant formulation: one equation implies the other one
by Hodge duality. It can be overcome by a 3+1 space-time splitting: by
selecting the purely spatial components one gets a non-redundant set of

equations that imply the full set of Maxwell equations (Bunster-Henneaux,
2011).



ii) Duality as an off-shell symmetry
Is duality a symmetry of the action?
The form of the Maxwell action

S= J d*x(E? — B?)

has been used to argue that duality does not hold off-shell. This is a
misconception: the dynamical variables are the components of the vector
potential A,,, not the fields E and B.

Duality is an off-shell symmetry of Maxwell theory in its Hamiltonian
formulation (Deser-Teitelboim, 76).

Duality transformations:

Ay = 0

SA; = PBepgA (IPET)
reproduce on-shell the infinitesimal form of the duality rotations with
parameter f3:

SEX —BB¥ + BeIATT (940, Fg)
5B = PBE*—pBA'(d"0,EM)



The previous transformation leaves Maxwell action invariant (up to total
derivatives), but the symmetry is not manifest at this stage.

One can introduce a second potential by solving the Gauss law (the
constraint in the Hamiltonian formulation) and write down a manifestly
duality-invariant action principle.

The action principle in its Hamiltonian form is
S[A,‘, T[j, Ao] = J at d3X[7TiA,' —H—- AOC]

with the Hamiltonian density

1

H = ~(E? + B?)

N

and the constraint .
C = a’E/

Ao is a Lagrange multiplier (its gauge variation involves a time derivative).



Solving for the constraint and substituting in the action principle:

SIA%] = J d*x(epB2A? — 5,,BB%) a,b=1,2
where
B? =V x A?

Gauge symmetries:
5Aa, = E),va

This action principle is manifestly invariant under SO(2) rotations
Al 5 A" =cosaA' + sin aA?
A2 5 AP =_sinaA' + cos aA?

(both €4, and 6,4, are SO(2)-invariant tensors).

Duality is a “hidden symmetry” of Maxwell action.



Lorentz invariance is not manifest in the duality-symmetric action principle.
Its (now hidden) presence may be verified by the fulfillment of the
Dirac-Schwinger commutation relations on the energy-momentum tensor.

It might be that EM duality is a more fundamental symmetry than Poincaré
invariance. The condition VB = 0 and the Poisson brackets

B2/(x), B2/ (x")] = elke®s ,(x — x') imply the Dirac-Schwinger relations.
Duality invariance implies Poincaré invariance (but not vice versa)
(Bunster-Henneaux, 2011).

In higher dimensions, the dual of the vector field is a D — 3 form. One cannot
rotate the prepotentials into each other. Nevertheless, twisted self-duality
survives.



iii) What about gravity?

Indications of the presence of duality in gravitational theories: Ehlers group,
Geroch group.

Ehlers phenomenon in gravitational theories: the emergence of hidden
symmetries in gravitational theories upon dimensional reduction and suitable
dualisations of certain Kaluza-Klein fields

Duality in linearized gravity (Henneaux-Teitelboim):

Hamiltonian form of the Pauli-Fierz action

Sthy, 7, n, n] = J at (J d®x mihy — H— J a®x(ne + n,e’))
with H is the Hamiltonian

R T B 1 1 1
H= J o |:7'(U7'[,'j — 7+ ZOThIdhy — SO, + 2 OO iy — Zaf"ha,,,h}

The constraints

e = 99h—Ah=0
¢ = -2n'=0

generate the gauge transformations of the dynamical variables.



The resolution of the constraints yields
T = efm”ejk’amakPn,
h,'j = e,'mnamd)jn + ejm,,a’"dn,-” + a,'Uj + ajU,‘

where ¢; and Py are two symmetric potentials and v; is a vector prepotential
that can be gauged away (Henneaux-Teitelboim, 2005).

The gauge transformations acting on the potentials are

52,7 = E)mf’ + aﬂ’]? + 6,‘/'1’]a
(ZD) = (P1,¢") a=1.2
These transformations have the form of the symmetries of conformal gravity.

Then the action can be written as (Bunster-Henneaux-Hbrtner)

Sz :J dt <f2J dsxe"‘BDo’;jZB,-ij' d*x(4RGRP T — gﬁmﬁﬁ)saﬁ)

Di[z3] = e C_] and R;[Z?) are respectively the dual of the Cotton tensor
and the Ricci tensor constructed out of the prepotentials.

This action is manifestly invariant under the SO(2) rotations.



Obsetrvation: one can define a dual metric in terms of the potential P; as
follows

fi[P] = €,',SarP$}' + e,-,sarPs,- + a,Vj + ajV,'
This relation may be inverted:
1
Pi = —g lewA T (07F) + et (O'F)]

(same for ¢;[h]) and then substitute in the two-prepotential action. One gets
an action principle that accommodates two metrics
(Bunster-Henneaux-Hértner):

mn+

S[h2.,, n? = KIh2, ] ,J dt HIR?, ] fJ dtd®x6,n?RP

Doubling of metric and (linearized) diffeomorphisms. Doubling of (not
compactified) coordinates?

Twisted self-duality can be discussed along the same lines
(Bunster-Henneaux-Hértner): a subset of the covariant twisted-self duality
condition (containing at most one time derivative) is equivalent to the full set.



2. Generalized gauge fields

The study of gauge theories of mixed symmetry tensor fields (“generalized
gauge fields”) was motivated by the emergence in string field theory of
massive higher spin excitations transforming in arbitrary representations of
the Lorentz group (mid-80’s), including mixed-symmetry representations.

Mixed-symmetry tensors also appear in the study of electric-magnetic duality
of linearized gravity and higher spin fields.

Dual formulation in higher dimensions (D > 4): the following irreducible
representations of the massless little group SO(D — 2) are equivalent:

:D_3{

This can be seen by dualizing the corresponding fields in the physical gauge:

Dj:D—S{

thdos _ #k1-kp_gh -Ip_s

hij = €iky.kp_3l; = €iky.kp_3Ejly..Ip_3

and bearing in mind the trace conditions. When considered as
representations of GL(D, R), they are not equivalent. This originates the
covariant dual action principles based on tensors of different Young symmetry
type (with their corresponding gauge symmetries).



The Curtright action is the action principle for a free massless tensor field of
mixed symmetry (2,1) (the simplest one). It is constructed by solely relying on
the principle of gauge symmetry:

i) one postulates the most general form of the gauge symmetries

8 Torapp = 20 Oaglp + 200ty Kplp — 20p Xy 3 Ty = Oy, Ky = Ky

ii) then one constructs an invariant Lagrangian

1
S[TLx1 0616} = 5 J dx |:Foc1 oczvcafiFm xpgh _ 3F B Fec [xzyy

xqxp
The field strength
Foq xpxgzfp — 3a[oc1 szgtx3](3 = aoq T0(21X3(5 + a(X2 T(X:;Oq(.)) + a(X3 Toq )
is only invariant under the o, gauge transformations:

6F0¢1 apogp = —65[55[“1 Koy 3]
This is the dual formulation of linearized gravity in five dimensions.



One needs at least two derivatives to construct a fully gauge invariant object
(generalized Riemann tensor):

EoopospiBs = 2Faiaoagipypa) = 60185010y Topexglpy)
The action is
S— J BXTHP Gy,
and the equation of motion
GDH B = 0
with |
Go<1 B = EOH xgB T QmoqﬁEfxz _nfxzﬁEOH)

the analogue of the linearized Einstein tensor in the dual theory.



Twisted self-duality form of the equations of motion
(Bunster-Henneaux-Hértner): The set containing at most first-order time
derivatives is equivalent to the full set (it implies both the dynamical and
constraint equations, making use of the gauge freedom of the theory).



Two-potential formulation of five dimensional linearized gravity
(Bunster-Henenaux-Hortner)

It requires the resolution of the constraints in the Hamiltonian formalism
(either in the Pauli-Fierz or the Curtright pictures) and the subsequent
substitution in the action principle.

S = de d4X [Ze’m‘"‘bef"c"e;,xyamanPabcda’cbx);

— (f*“(H,-,'[P]R’f[P} — %HZ[P]) + 2 (2Ej[p]ET ] — gE,-[qp]E’[cb])ﬂ

The dynamical variables are now a (2,1) potential ¢;x and a (2,2) potential
Pjis with gauge transformations:

51 d)rsm = B[rés]m

52(13111rs = arSsm — asSrm + a,Asm — E)SA,,,, + QamAS,

o4 Pijk/ = X«ilij) + Xijik,j, X = 21

1
82 P = 1[5:';(5// — didléo

The equations of motion derived from the variational principle coincide with

the twisted self-duality equations. An action principle involving the graviton

and its dual was also derived, with a spatially-non-local kinetic term.



Difficulties in the construction of action principles for generalized gauge fields.

No-go result: no consistent deformations of the action for a free (2,1) tensor
field under the hypotheses of locality and manifest space-time covariance
(Bekaert-Boulanger-Henneaux, 2003).

The analysis is based on BRST cohomological methods.
Lack of a notion of diffeomorphism covariance for mixed-symmetry tensors.

The problem is relevant in the context of the E;o and E; conjectures.



Deformation of the Curtright action (Hortner, 2017)

Consider the linearized Einstein-Hilbert action in the ADM formalism

S= J'dDX {n’jg,',- + Ng1/2(R —2A) + Ngi1/2(ﬁ7{2 — g,'kgj/T[ijT[kI) + 2N,'7Tij i
(g = det(g;), Ni = goi, N = (—g®)~"/2, = = g;n¥) around a de Sitter
background (use of planar coordinates for convenience):

9 =gj+hy, n=7+p
N=1+n N, =n;

with

g = fP(1)8;
= V/g(g"K — K') = —(D—2)kf %!



After linearization, the ADM action takes the form
S= Jde [p"/h,-j —H —nC — n,-C’]

with the Hamiltonian
—D+

5
2 _ il
5P —2(D—3)koyh + khp

+fD77 |:%aihjka,‘hjk — jza,-ha"h+ %a’ha/h,, — %a;h”akhkj}

K = f*D+5pijp/'j _

05 (D—2)(—2D +6)

g2
K 4

h,-,h’f
The linearized constraints

C = fP5(Ah—0;0;h") + 2kpf? + fP3k?h(D —2)(D—-3) =0
C' = —29;p" + (D —2)fPSk(20,h* —d'h) = 0

generate the gauge transformation of the canonical variables.



In order to solve the constraints it is useful to perform the canonical
transformation

;)

h,'/' — ':hij

proe :p”—gk#’%(zh’f—mh).

derived from the generating functional

Flh;, p") = Jde‘x {ﬁ’"h,y + (Dgz)kff’*s(h;jh’/— %h2)
as follows:
OF R D—2 .
Shi = pU:pU+kaD 5(2/7,/76,//7)
SF

hy = h;

5p7



The action principle reduces then to

SIpY, hy, n,ny) = Jde [y~ H—nC— ], (0.-66)
where
Loy P o 1 1o 1
H=fP"5ppl — —— 2p2 + 2kph" + fP-7 [Za'ﬁka[h,k — 4 0ihd'h+ 3 hdlhy

”a hid hk,}

and

C = fP3(—0'd'hj + Ah) + 2kf*p
C' = —20;p".

The new canonical variable p¥ transforms as

5pT = fP-5(—0'0/E, + 51AE)



Focusing on five dimensions, the momentum constraint is solved as in the flat

case:
Bl = MM eiPI0, 0, Pimpq.

with the ambiguities

1
8Pabca = 2Xcdibal + 2Xabld.cl T+ Z[éacébd — 8agdpcl&,

Xabe = —Xbac: X[abe) = 0

£ induces the gauge transformation on p, whereas x . defines an internal
invariance.

Substitution of the trace in the scalar constraint produces

Ah—3;9;h" + 4APKAP®, — 8f2k0;0;P™ , = 0.
We shall decompose the potential Py as follows:

1
Pabcd = Qabcd + ﬁ [6acébd - 6ad6bc] Pm’r:m

with Qi a (2,2) tensor whose double trace vanishes. The final expression for
h; reads

hy = 0 erapd® + 0 ejapd® + it + Ou;

4
—8kf? Py + 5kfzzs,-,-Pr,mm”. (0.-76)



The ambiguities in the choice of the prepotential are

6(l:’.':zbc = aaSbc - abSac + aaAbc - abAac + 2acAba
+B[a 8 blc — 16kf2 ()N(cab + )Zabc)
dup =&+ 16kf2€,'bxy)(

bxy 2aI€,-/ abAba




We can now write the action principle in terms of the potentials

Sldji, Paved] = Jdl‘ d*x [2€imab€jn0d€ilxyamanpabcdald)x};‘

+%kPaaabPab — 8kP;j0,0,P + 8kf2 /370, 0, Py — 8KF? €00 0, PY
+§k2f25jpajp + 32k2f20' P d;P* — 162k20,Pxd' P* — 63—4k2f26,-Pa,-P'f

_ (f*“(R,-{P]R’f[P] — LRI + PRERGIER (o)~ gE,m)]E'[qﬂ)ﬂ

Rijimn = 189 Pixj im,n)

and
Ejjmn = 69,0 Tixym)



Although the constraints can be solved without prior fixing of the gauge, in

order to construct the dual theory it is useful to use the gauge choice

pl = a+8p" =& —0VE+51AE
hy bj — 2Kf?E

a = 0: achieved through the gauge choice & = %A*f).

The constraints take the same form as in the flat case:

a,a’/
Ab—3'¥b;

[l
o o

so they are solved

a F20%0" e jav € jicg P

by = (¥ empd® + ' ejmpd®) + iU + U

(0.-88)



After substituting in the action, the terms proportional to k and k2 are no
longer present:

S[Pjit, davcl = Jdt d*x [zamak€[mnp€jk51Pnpstaleilabd)at;

7 R1P)

4. irp]
*(f (Ry[PIR"[P] 57

 PREM ¢ Exld] — fE,-[wE"[w)}



In order to construct the dual theory one defines the canonical pair of dual
variables as in the flat case:

gk % 22, [2 hiab P, bij 4 llab Pabkj _ b Pabki]
R = FPe€jmnerst0™O G
The action
S, /e, my, myl = stx [ﬁ”k?,jk —H—m — m,-krf"]

reproduces the form of the prepotential action, with the Hamiltonian density

Cn 1 " n N
H = —2k7“r’fkt,-,-k+éaiz‘,-k,a’t/k’+a,1‘,-k,aftk”
okt odi o La ik _ 1 aiiak
_2 ijk Y1 27T’lk7-[ - 2”1' T[jk
and the constraints
T = 9,01k
T = 20, (/M + AK1.

This is regarded as the dual of the standard action written in terms of the
‘new’ variables (b, a’).



In order to get the action principle dual to Pauli-Fierz in the untransformed
variables (hj, ) one has to undo the canonical transformation in the dual
picture. Express the generating functional in terms of the relevant dual
variables.

Since the canonical transformation leaves h; invariant, it is natural to expect
in the dual theory the action of the canonical transformation on 7 to be the
identity map: we set Ak = ik,

We introduce the inversion formulas (valid in the flat case and also in our
gauge choice)

bRl = —5 A R

R ) N ) o 1 . N . N
Pavcall] = 5 [eab,-,a'A*1 t.) + ecqjd’' A" tab’] ~ 52 [eab,-,-a’A’1 t.g+ecqio' AL

+eca,-,-6"A*1?bJ + €ad,'jaiA71lfbcj + GbC,]'aiA71?aJ + GDdUaiAivfcaj]



The generating functional reads

F[Tfijk, ?ijk] = J d4X[—’t\ijk7T,'jk — 3kmik AT T[,'/'k]

When expressed in terms of the dual variables, the generating funActionaI
depends on the ‘old’ conjugate momentum 7/ and the ‘new’ field lijk, so the
relevant relations are now

oF
Stk

oOF . ;
t,'/'k =—— = t,'jk + 6KA_17I,'jk, Ak — —

ik
_ s
Sk




The action is now expressed in terms of the pair (£, 7*):

S[tijk, 7Tijk, mi, m,-,] = Jdtd4X [Ttijk -t,'jk —H - m,-l“’ — m,-,'F"/]

with the Hamiltonian density

H = Ho + Hn
where
Ho = %a,-t,-k,a"tfk’ + ity 4 — %akt,-,-ka,t’/’
+%7r,-jk7'c’7" - %nl”n
and
Hp = 4k7r”kt,jk — 6k27'r’7kA*17'r,-,-k

the term carrying the deformation. The deformed constraints are

M= 9;0k(t™ — 6KA "my — Sjk)
= —29,(n* + )



The introduction of a positive cosmological constant in the Pauli-Fierz theory
corresponds to the introduction of spatially non-local terms in the dual theory.
This is regarded as a deformation of the Curtright action.

Our analysis relies on the choice of planar coordinates, which rendes the
analysis similar to the flat case.

Conceptual questions: what is the interpretation of a cosmological constant
int he dual theory? Properties of space-time in the dual picture?



3. Work in progress

Potential formulation of gravity linearized around non-trivial backgrounds, with
the intention of studying EM duality (4d) and deformations of dual action
principles (d¢4).

AdS duality conjecture: linearized higher-spin theories on AdS, spaces
possess a generalization of electric-magnetic duality whose holographic
image is the natural SL(2, Z) action on boundary two-point functions (Leigh,
Petkou)

Kasner: validity of duality near a non maximally symmetric, singular
space-time? (d = 4) Interpretation of the singularity in the dual picture?
(d > 4)



Potentials near AdS background:

Make use of the conformally flat character of maximally symmetric
space-times: g, = e“d,v

Constraints:

C = 0;0;h" —Ah+3;wd'h—dowe“p,
C' = 9p'+0ojwp’ — %a’wpf dowe L h* — ée*waowakwh’k

1 .
+ Ee_“’aowa’h
(0.-113)

Simplification: work in the gauge p = h=0.
a) Momentum constraint

Using Einstein equations for the background and the gauge condition one
gets

;P! + djwp’ — e~ (dowh*) =0

Multiplying the previous expression by e® renders the terms in the
momentum as a total derivative, and the constraint reads

9;(e“p’ —dowh’) =0



It is solved as follows:
e‘“p’/ — aowhij = e,-mne,-k,a’"akP"’

The gauge conditions p = h = 0 imply the necessity of projecting the right
hand side of (35):

i i 1 1
e'p’ = dowh’ = 2;0,mPjm + 8;0mPim — 50,0, — Ea,-a,aaabA*1 Pab

1 1
AP + 58;AP — gsyaaabPab

which amounts to performing the gauge transformation
Pj — Pj— 3P8j + 15;0,0,A" P2,



b) Hamiltonian constraint:
3'dhj — Ah+ 9;wd'h — e“dowp — gew/\h:o (0.-118)
In the gauge h = p = 0 it reads simply
'dh; =0 (0.-118)
which is solved as follows:

hj = €apd?dY + €jar0? D" (0.-118)

which automatically satisfies h = 0.



Potentials near a Kasner background:
Goo = —1, gj = £245;
a) Momenutm constraint:
0,0 + " — G )
This is the divergence of an expression that is not symmetric.
Use the gauge
djhMRS = WM R} + 0,9 R™ A,

The solution reads

B () + W) = MM 0,0, Py



b) Hamiltonian constraint:

2:0;(h" — 7g"P + aP" + 277 P — 2™ P/, — 2" P’ + §' 7 Pap — G'h + §'71% Pap)
=0

Defining

J1=h —"g'P+RPT +27IP —27MPI —27ImMP! 4 glRp,,
and imposing the usual gauge condition j = 0 one finds
hi = 3,0 + 3,0, + 7! — RPT — 2/IP 4+ 27MPI | 4 27IMPI | — GIRPP,,
The use of the gauge condition
a,-h"mﬁ,{, = a,-h/mﬁ,,", + 6j§’f7‘t’""hmn

implies the necessity of projecting the potential:

d—=d+A T O+RO+TA P+ ... (0.-125)

Note that for maximally symmetric space-times 7/ oc 7,



Thank you






