
(Re)interpreting the results of new physics searches at the LHC, May 13, 18

LHADA, from an analysis description to the result
reinterpretation

Philippe Gras

CEA/IRFU - Saclay

May 13, 18

1 / 21

Introduction

I Lhada was introduced in Les Houches (LH) 2015 Physics at TeV
workshop as a possible standard to describe LHC analysis

I Latest developments focused on automatic code generation

I Question we will address in this talk:

Can reinterpretation code can reliably∗ be generated from an analysis
description in a simpli�ed language like Lhada?

(*) Reliably means:

I the code generator will understand any valid input �le;

I the generated code compiles and does what is expected.

2 / 21

Lhada

I Lhada aims to de�ne a standard to describe analyses

I It stands for Les Houches Analysis Description Accord. It consists of:

I A description of the requirements of the accord: Contrib. 16 of LH
2015, arXiv:1605.02684

I A proposal for the accord, described in Contrib. 17 of LH 2015

→a work in progress

I Lhada is not limited to result reinterpretation: �ve use cases are
listed in Contrib. 16

I In the following �Lhada� will refer to the Contrib. 17 proposal
I Principle: cuts are described in a simpli�ed language, more complex

algorithms are described in programming language.

3 / 21

https://arxiv.org/abs/1605.02684

Machine interpretation of Lhada language
I Lhada is loosely de�ned, which makes it very �exible

I functions de�ned with a reference to a paper or document and an
example code in a �commonly-used programming language�, where
commonly-used is not de�ned.

I external object, like reconstructed object, are de�ned by a reference
to a paper or documentation

I It is impossible to write a machine-interpreter that supports this
�exibility

Lhada is well suited for human reading

I Lhada 2017 introduced in LH 2017 (arXiv:1803.10379)
I Result-interpretation oriented
I Based on Lhada: Lhada with extra rules
I Designed to be unambiguous and be machine interpretable

Lhada17 is designed for human and machine reading

4 / 21

https://arxiv.org/abs/1803.10379

What makes Lhada 2017 speci�c?

I De�nes the programming language (c++) and code provided with
the Lhada are not just example codes, but code which can used by
the interpreter, thanks to few simple rules

I externals objects come from a common library of object de�nitions

I Library of common functions provided for convenience (limited, but
intended be extended)

I Syntax of Lhada 2017 rigorously de�ned using computing standards
(BNF)

Philosophy: a well-de�ned language that tools will fully support

5 / 21

Analysis description example: SUSY search with jets+MET

I Analysis: Search for squarks and gluinos in �nal states with jets and
missing transverse momentum at

√
s = 13TeV with the ATLAS

detector, doi:10.1140/epjc/s10052-016-4184-8

I Preselection common to all signal regions (SR)
I MET > 200GeV
I Veto on muons and electrons
I At least two jets

I Remaining selection in the following, in Lhada format

6 / 21

http://doi.org/10.1140/epjc/s10052-016-4184-8

Analysis description example: selection description

Lhada �le written by S. Sekmen and P. Gras available in http: // cern. ch/ go/ Sj6V

cut preselection cut 2jm

Pre-selection cuts #Signal region 2jm

select MET.pt > 200 select preselection

reject cleanmuons.size > 0 select jetsSR[0].pt > 300

reject verycleanelectrons.size > 0 select jetsSR.size >= 2

select jetsSR.size >= 2 select dPhiMet3j > 0.4

select jetsSR[1].pt > 50

cut 2jl select METoversqrtHT > 15

Signal region 2jl select Meff > 1600

select preselection

select jetsSR[0].pt > 200 cut 2jt

select jetsSR.size >= 2 # Signal region 2jt

select dPhiMet3j > 0.8 select preselection

select jetsSR[1].pt > 200 select jetsSR[0].pt > 200

select METoversqrtHT > 15 select jetsSR.size >= 2

select Meff > 1200 select dPhiMet3j > 0.8

select jetsSR[1].pt > 200

select METoversqrtHT > 20

select Meff > 2000

7 / 21

http://cern.ch/go/Sj6V

Analysis description example: selection description (con't)

cut 4jt cut 6jm

#Signal region 4jt select preselection

select preselection select jetsSR[0].pt > 200

select jetsSR[0].pt > 200 select jetsSR.size >= 6

select jetsSR.size >= 4 select dPhiMet3j > 0.4

select dPhiMet3j > 0.4 select dPhiMetAllJets > 0.2

select dPhiMetAllJets > 0.2 select jetsSR[5].pt > 50

select aplanarity > 0.04

cut 5j select METoverMeff6j > 0.25

#Signal region 5j select Meff > 1600

select preselection

select jetsSR[0].pt > 200 cut 6jt

select jetsSR.size >= 5 select preselection

select dPhiMet3j > 0.4 select jetsSR[0].pt > 200

select dPhiMetAllJets > 0.2 select jetsSR.size >= 6

select jetsSR[4].pt > 50 select dPhiMet3j > 0.4

select aplanarity > 0.04 select dPhiMetAllJets > 0.2

select METoverMeff5j > 0.25 select jetsSR[3].pt > 100

select Meff > 1600 select jetsSR[5].pt > 50

select aplanarity > 0.04

select METoverMeff6j > 0.2

select Meff > 2000

8 / 21

Analysis description example: object description

object jets

take external JetAk04-AtlasRun2-00 ← Lhada 2017 speci�c

select pt > 20

select |eta| < 2.8

object electrons

take external Electron-AtlasRun2-00

select pt > 10

select |eta| < 2.47

object cleanjets

take jets

apply dRJetVeto(col2 = electrons, ← use of a c++ function

minDeltaR = 0.2)

object jetsSR

take cleanjets

select pt > 50

object MET

take external Met-AtlasRun2-00

9 / 21

Analysis description example: object description (con't)

object muons

take external Muon-AtlasRun2-00

select pt > 10

select |eta| < 2.7

object cleanmuons

take muons

apply dRPartVeto(col2 = cleanjets, minDeltaR = 0.4)

object cleanelectrons

ctake electrons

apply dRPartVeto(col2 = cleanjets, minDeltaR = 0.4)

object verycleanelectrons

take cleanelectrons

apply unravelEl()

10 / 21

Functions in Lhada 2017

I Algorithm that goes beyond a cut are described with a function
implemented in c++ like in previous cleanjets example

I Lhada 2017 de�nes the three variable types LhadaParticle, LhadaJet,
and FourMomentum together with std::vector of these types

I note: a code generator that reads Lhada can use di�erent types for
particle and four-momentum in the generated code

I Functions are provided in an accompanying �le which must be
compilable

I The code can depend only on a restricted set of libraries (currently
c++ and the Lhada tool library)

11 / 21

Function example
In the Lhada �le:

function unravelEl
Filter an electron collection by requiring a mininum of a 0.05 distance
in the \eta,\phi plane between the leptons. In case of multiple lepton
within this distance the first in the collection (pt ordered)
is kept and others are dropped.
arg electrons #collection to filter
code ATLASSUSY1605.03814_functions.h

In the ATLASSUSY1605.03814_functions.h �le:

std::vector <LhadaParticle > unravelEl(const std::vector <LhadaParticle
>& el){

const int n = el.size();
const double minDeltaR = 0.05;
std::vector <LhadaParticle > r;
r.reserve(n);
for(int i = n - 1; i >= 0; --i){

bool veto = false;
for(int j = i - 1; j >= 0; --j){

veto = veto || (deltaR(el[j], el[i]) < minDeltaR);
}
if(!veto){

r.push_back(el[i]);
}

}
return r;

}

12 / 21

Analysis results

Event counts in SR (and optionally control regions) are provided in the
Lhada �le

Results

table results_events

type events

columns name obs bkg dbkg

entry 2jl 263 283 24

entry 2jm 191 191 21

entry 2jt 26 23 4

entry 4jt 7 4.6 1.1

entry 5j 7 13.2 2.2

entry 6jm 4 6.9 1.5

entry 6jt 3 4.2 1.2

13 / 21

Generation of Rivet code

lhada2rivet is a tool written in python that generates a Rivet
analysis from an analysis description written in Lhada 2017

I the accompanying c++-code is validated before the code generation
I ease debugging by isolating problem in user's code from the possible

ones in the generated code

I Particles and jets are implemented using Rivet speci�c objects

I At prototype level: not su�ciently tested yet to be smoothly used by
non-developers

14 / 21

Validation

I Cut�ow compared with the o�cial Rivet routine from the release
2.6.0

Reference Lhada+Rivet

Description #evt tot.e� #evt tot.e� ∆/
√
N

2jl cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 28581 91% 28606 92% 0.10
Dphi_min(j,MET) 17279 55% 17277 55% -0.01
pT2 17051 55% 17058 55% 0.04
MET/sqrtHT 8910 29% 8891 28% -0.14
m_e�(incl) 8909 29% 8890 28% -0.14

2jm cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28466 91% 28488 91% 0.09
Njet 28466 91% 28488 91% 0.09
Dphi_min(j,MET) 22900 73% 22950 73% 0.23
pT2 22900 73% 22950 73% 0.23
MET/sqrtHT 10728 34% 10724 34% -0.03
m_e�(incl) 10621 34% 10629 34% 0.05

2jt cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 28581 91% 28606 92% 0.10
Dphi_min(j,MET) 17279 55% 17277 55% -0.01
pT2 17051 55% 17058 55% 0.04
MET/sqrtHT 5073 16% 5082 16% 0.09
Pass m_e�(incl) 4852 16% 4861 16% 0.09

4jt cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 27317 87% 27359 88% 0.18
Dphi_min(j,MET) 18911 61% 18936 61% 0.13
pT2 18904 60% 18932 61% 0.14
pT4 16731 54% 16755 54% 0.13
Aplanarity 11866 38% 11897 38% 0.20
MET/m_e�(Nj) 8381 27% 8400 27% 0.15
m_e�(incl) 7231 23% 7224 23% -0.06

Refernce Lhada+Rivet

Description #evt tot.e� #evt tot.e� ∆/
√
N

5j cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 21253 68% 21270 68% 0.08
Dphi_min(j,MET) 14296 46% 14299 46% 0.02
pT2 14291 46% 14296 46% 0.03
pT4 13346 43% 13344 43% -0.01
Aplanarity 9864 32% 9865 32% 0.01
MET/m_e�(Nj) 4699 15% 4715 15% 0.16
m_e�(incl) 4657 15% 4673 15% 0.17

6jm cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 13349 43% 13331 43% -0.11
Dphi_min(j,MET) 8614 28% 8594 28% -0.15
pT2 8613 28% 8593 27% -0.15
pT4 8313 27% 8282 27% -0.24
Aplanarity 6470 21% 6465 21% -0.04
MET/m_e�(Nj) 2781 9% 2751 9% -0.40
m_e�(incl) 2764 9% 2738 9% -0.35

6jt cut-�ow 31250 100% 31250 -
Pre-sel+MET+pT1 28581 91% 28606 92% 0.10
Njet 13349 43% 13331 43% -0.11
Dphi_min(j,MET) 8614 28% 8594 28% -0.15
pT2 8613 28% 8593 27% -0.15
pT4 8313 27% 8282 27% -0.24
Aplanarity 6470 21% 6465 21% -0.04
MET/m_e�(Nj) 4018 13% 4002 13% -0.18
m_e�(incl) 3805 12% 3805 12% 0

15 / 21

Another code generator: Lhada2tnm
Sezen Sekmen, Harrison Prosper

I Based on genuine Lhada,
I However, it makes assumptions similar to the rules introduced in

Lhada2017: code in c++, de�ne the c++ class to be used for
particles and four-momentum (TLorentzVector).

I Produces code for the TheNupleMaker (TNM) framework which is
based on ROOT ntuples.

I Use a plugin mechanism to read the input ntuple. Delphes ntuple
reader provided.

16 / 21

Another code generator: Lhada2tnm (cont'd)

Sezen Sekmen, Harrison Prosper

Usage

I Can be used for any experimental or phenomenological analysis
which uses simple ROOT ntuples.

Lhada reader properties

I does not require speci�c order of the de�nition blocks

I handle automatically name collisions the Lhada �le can contain

17 / 21

Another code generator: Lhada2tnm (cont'd)

Sezen Sekmen, Harrison Prosper

Status and plans

I Being tested with the 2 analyses used in the LH 2017 Contrib 21 exercise

I Validation result will be available very soon.
I https://github.com/lhada-hep/lhada/tree/master/lhada2tnm

I Next steps:

I Further diagnostic tools (work in progress)
I More complete analyses to further test and improve lhada2tnm
I Test the usage in experiment analysis development (other usage than

reinterpretation)

18 / 21

https://github.com/lhada-hep/lhada/tree/master/lhada2tnm

Comparison with other approaches
Experiments provides the information, the recasters implement
the reinterpretion code

I In this approach, the genuine Lhada is useful to describe unambiguously the
analysis

I Pros: easier for the experiments

I Cons: di�cult validation. Mode di�cult for rescasters

Experiment describe their analyses in a Lhada 2017 like
language, used to generate code

I Pros: analysis emulation can be validated by the experiments. Easier for the
recasters. Code can potentially be generated for the di�erent reinterpretation
frameworks.

I Disadvantage: heavier for analysis authors

Experiment implement the analysis emulations in one of the
available frameworks

I Pros: validated by analysis authors. Easier for the recasters.

I Cons: heavier for analysis authors.

19 / 21

Conclusions

Answer to the introduction question:

I Reinterpretation code can reliabl be generated from an analysis
description in a simpli�ed language like Lhada.

Next steps:

I Understand if, for the analysis authors, the generated code approach
is preferred to direct code writing

I Continuation of work on lhada2rivet to go from a prototype to a
production tool will depend on this

Note for lhada2rivet

I The prototype was developed to test the Lhada concept

I Opened to use a di�erent language

I Can easily be extended to other frameworks (MadAnalysis,
CheckMate,...)

20 / 21

Backup: Lhada analysis use cases

I Analysis preservation

I Analysis design

I Analysis review and communication

I Interpretation studies and analysis reimplementation

I Comparison of analyses

21 / 21

