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HistFactory

fundamentally a (quite flexible) p.d.f template to build statistical models 
from binned distributions and data.

Widely used in Standard Model measurements and BSM searches (in 
ATLAS it’s the lingua franca of 
binned models.
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HistFactory — The Template

Scenario: multiple disjoint channels (or regions) of binned distribution 
with multiple samples contributing to each with additional (possibly 
shared) systematics between sample estimates. Applies to many 
scenarios in HEP.

Two main pieces:

• Poisson pdf for bins observed in all channels
• Constraint pdf (+ data) for “auxiliary measurements” — 

encoding systematic uncertainties (normalization, shape, etc)



HistFactory — The Template

It’s only math, but for now HistFactory has been tightly linked to the 
ROOT ecosystem, since the only implementation of the template is 
available in RooStats + RooFit.

• hard to quickly start using HF pdfs without having to learn ROOT / 
RooFit / RooStats 

• possible scaling issues for large models (both I/O and Memory)
• hard to plug in modern tools for minimization, computation of the pdf
• data to build the likelihood stored in binary ROOT format — not ideal 

for long-term preservation such as on HepData
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pyhf provides two things

• a standalone pure-python implementation, including hooks into 
modern deep-learning, autodifferentiable tensor libraries
• implementation of asymptotic interval estimation algorithm based 

on profile likelihood test-statistic
• a pure JSON schema to distribute and archive HistFactory models 

ingredients without any reliance on binary formats

ROOT pyhf



HistFactory 
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pyhf provides two things

• a standalone pure-python implementation, including hooks into 
modern deep-learning, autodifferentiable tensor libraries

• implementation of asymptotic interval estimation algorithm based on 
profile likelihood test-statistic

• a pure JSON schema to distribute and archive HistFactory likelihoods    
without any reliance on binary formats (think: HepData)

When to use pyhf:

• construct new models: just want to quickly calculate CLs for some 
background, signal and data? standard python + 2 lines in pyhf 

• manipulate full featured hep-ex models outside of ROOT: e.g. for 
reinterpretation: take existing model, swap out signal, re-fit.



pyhf with auto-differentiable tensor backends

pyhf implements all numeric operations through
a thin layer of of abstract n-D array operations 

allows us to transparently switch out numeric
backend of pyhf 

numeric backends popular in Deep Learning
allow us to compute exact gradients
when minimizing likelihood

Easy to perform stat. analysis on GPUs (good for large models)

(Automatic differentiation: for a given algorithm, convert into basic 
operations for which exact gradients are known, propagate gradients 
through entire algorithm)



pyhf with auto-differentiable tensor backends

Benchmark: single channel with many bins and uncorrelated bin-wise 
uncertainties

For many channels, ROOT is still faster ( → investigating)



developed on GitHub — everyone is welcome to 
join. https://github.com/diana-hep/pyhf 

https://github.com/diana-hep/pyhf


HistFactory-JSON as an archive product on HepData

Current path of data to HepData for a BSM search from creation to 
usage:
• produce XML and ROOT of the analysis and create workspace
• decide what distributions at which values of parameters (pre-fit, post-

fit) etc make sense
• use scripts to produce HepData YAML/JSON
• process has many steps and is lossy, we are not archiving the best 

information we have.
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HistFactory-JSON as an archive product on HepData

HF JSON is natively compatible with JSON-based invenio backend of the 
new HepData. Easy to add. 

Advantages:
• very easy for analyzers to provide, they already produce this data — 

no additional work and better quality — best of both worlds
• archive complete, lossless information in a pure text-based 

ubuiquitous format for the long-term
• can always simplify later, if desired. We can develop common tools to 

do so vs asking analyzers for additional work
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Expressing the full stat. model in industry standard formats allows us to 
tap into a wide range of industry tools to handle these objects.

Example: a standard interchange format of likelihood patches for 
reinterpretations of HistFactory-based analyses.

JSONPatch is an industry standard (RFC 6902) to patch JSON 
documents.

Analysis implementations (Rivet, CheckMate, etc) only need to write 
simple JSON patch for the new signal distribution and then use common 
fitting tools 

http://tools.ietf.org/html/rfc6902


Conclusion

• first non-ROOT implementation of HistFactory p.d.f. template
• very standard python + numpy + scipy stack
• can run on GPUs / deep learning frameworks w/ autograd
• easy to do basic things (single-bin countring expt), possible to do 

full-fledged ATLAS likelihoods

• JSON spec to describe statistical model in a single, text-based file. 
(incl. tools to convert XML + ROOT into JSON)
• ideal format to store in HepData
• very robust, will be supported for a long time


