
It’s the difference between if you had airplanes
where you threw away an airplane after every flight,
versus you could reuse them multiple times.

— Elon Musk

K Cranmer, M Feickert L Heinrich, G Stark 
4th Reinterpretation Workshop

May 15th 2018

pyhf: standalone HistFactory

/lukasheinrich

HistFactory

fundamentally a (quite flexible) p.d.f template to build statistical models
from binned distributions and data.

Widely used in Standard Model measurements and BSM searches (in
ATLAS it’s the lingua franca of 
binned models.

SM

SUSY

Exotics

HistFactory — The Template

Scenario: multiple disjoint channels (or regions) of binned distribution
with multiple samples contributing to each with additional (possibly
shared) systematics between sample estimates. Applies to many
scenarios in HEP.

Two main pieces:

• Poisson pdf for bins observed in all channels
• Constraint pdf (+ data) for “auxiliary measurements” —

encoding systematic uncertainties (normalization, shape, etc)

HistFactory — The Template

It’s only math, but for now HistFactory has been tightly linked to the
ROOT ecosystem, since the only implementation of the template is
available in RooStats + RooFit.

• hard to quickly start using HF pdfs without having to learn ROOT /
RooFit / RooStats

• possible scaling issues for large models (both I/O and Memory)
• hard to plug in modern tools for minimization, computation of the pdf
• data to build the likelihood stored in binary ROOT format — not ideal

for long-term preservation such as on HepData

HistFactory

HistFactory spec + data

XML

XML

XML

file1.root

file2.root

file3.root
Likelihood (RooFit Workspace)

+ variation  
histos

build L’hood/pdf

interval estimation

pyhf provides two things

• a standalone pure-python implementation, including hooks into
modern deep-learning, autodifferentiable tensor libraries
• implementation of asymptotic interval estimation algorithm based

on profile likelihood test-statistic
• a pure JSON schema to distribute and archive HistFactory models

ingredients without any reliance on binary formats

ROOT pyhf

HistFactory

HistFactory spec + data

Single JSON File

Likelihood (RooFit Workspace  
or python pdf implementation)

+ variation  
histos

build L’hood/pdf

pyhfROOT  
HistFactory

pyhf provides two things

• a standalone pure-python implementation, including hooks into
modern deep-learning, autodifferentiable tensor libraries

• implementation of asymptotic interval estimation algorithm based on
profile likelihood test-statistic

• a pure JSON schema to distribute and archive HistFactory likelihoods
without any reliance on binary formats (think: HepData)

When to use pyhf:

• construct new models: just want to quickly calculate CLs for some
background, signal and data? standard python + 2 lines in pyhf

• manipulate full featured hep-ex models outside of ROOT: e.g. for
reinterpretation: take existing model, swap out signal, re-fit.

pyhf with auto-differentiable tensor backends

pyhf implements all numeric operations through
a thin layer of of abstract n-D array operations

allows us to transparently switch out numeric
backend of pyhf

numeric backends popular in Deep Learning
allow us to compute exact gradients
when minimizing likelihood

Easy to perform stat. analysis on GPUs (good for large models)

(Automatic differentiation: for a given algorithm, convert into basic
operations for which exact gradients are known, propagate gradients
through entire algorithm)

pyhf with auto-differentiable tensor backends

Benchmark: single channel with many bins and uncorrelated bin-wise
uncertainties

For many channels, ROOT is still faster (→ investigating)

developed on GitHub — everyone is welcome to
join. https://github.com/diana-hep/pyhf

https://github.com/diana-hep/pyhf

HistFactory-JSON as an archive product on HepData

Current path of data to HepData for a BSM search from creation to
usage:
• produce XML and ROOT of the analysis and create workspace
• decide what distributions at which values of parameters (pre-fit, post-

fit) etc make sense
• use scripts to produce HepData YAML/JSON
• process has many steps and is lossy, we are not archiving the best

information we have.

XML

file1.root workspace.root
pre-fit

post-fit

etc

~lossless 
conversion lossy projection

Experiments 3rd party physicists

approximate
likelihood

data reuse

HistFactory-JSON as an archive product on HepData

HF JSON is natively compatible with JSON-based invenio backend of the
new HepData. Easy to add.

Advantages:
• very easy for analyzers to provide, they already produce this data —

no additional work and better quality — best of both worlds
• archive complete, lossless information in a pure text-based

ubuiquitous format for the long-term
• can always simplify later, if desired. We can develop common tools to

do so vs asking analyzers for additional work

XML

file1.root workspace.root
pre-fit

post-fit

HF JSON

~ lossless conversion
lossy projection

Experiments

3rd party physicists

exact
ingredientsdata reuse

automatic, 
lossless archiving

exact or simplified
likelihood

Expressing the full stat. model in industry standard formats allows us to
tap into a wide range of industry tools to handle these objects.

Example: a standard interchange format of likelihood patches for
reinterpretations of HistFactory-based analyses.

JSONPatch is an industry standard (RFC 6902) to patch JSON
documents.

Analysis implementations (Rivet, CheckMate, etc) only need to write
simple JSON patch for the new signal distribution and then use common
fitting tools

http://tools.ietf.org/html/rfc6902

Conclusion

• first non-ROOT implementation of HistFactory p.d.f. template
• very standard python + numpy + scipy stack
• can run on GPUs / deep learning frameworks w/ autograd
• easy to do basic things (single-bin countring expt), possible to do

full-fledged ATLAS likelihoods

• JSON spec to describe statistical model in a single, text-based file.
(incl. tools to convert XML + ROOT into JSON)
• ideal format to store in HepData
• very robust, will be supported for a long time

