Introduction to Decays in SoftSusy-4.0

Thomas Cridge: t.cridge@damtp.cam.ac.uk
In collaboration with Professor Ben Allanach

CERN (Re)Interpreting the results of New Physics Searches at the LHC
Workshop– 14/5/2018

See https://softsusy.hepforge.org/ for list of SoftSusy papers and manuals.
Overview for the talk:

1. Introduction
2. SoftSusy Decays Capabilities
3. Decay mode examples, validations and results:
 a) MSSM Susy decays
 b) Higgs decays
 c) $1 \rightarrow 3$ decays
 d) Special Cases - Chargino to Pion decays – NLSP to gravitino decays
 e) NMSSM decays
4. How to use SoftSusy
5. Summary, Conclusions, Future

Introduction – still searching for Susy

- Supersymmetry is *very well theoretically motivated* as a new physics solution for many SM issues – naturalness, (technical) hierarchy, DM,
- BUT supersymmetry has *no experimental signatures* – where is it?
- Experimental searches make many assumptions

Given the lack of signals – need to:

1. Search **broad**er parameter space
2. Search **ALL NOOKS AND CORNERS** of available parameter space
3. Search in a more **THEORETICALLY-RIGOROUS** manner

-> will allow discovery or rigorous exclusion of susy parameter space

- Need for *public pheno tools producing theoretical predictions* in the complete susy models across broad ranges of (p)MSSM, NMSSM parameter space -> softsusy, susyhit, sphen, feynhiggs, nmssmtools, etc.
- From experimental point of view exclusions need masses and branching ratios -> *spectrum generators and decay calculators*
Softsusy Decay Calculator

Key Decays Included:

- All MSSM 2 body decays at (at least) tree-level, both sparticle and Higgs boson decays.
- Higgs decays to $\gamma\gamma$ and $Z\gamma$ at leading order (i.e. one-loop) in the MSSM and NMSSM.
- QCD corrections to neutral Higgs decays to quarks (1-loop) and to gluons (2-loop) in the MSSM and NMSSM.
- 3 body decays of gluinos, charginos and neutralinos.
- All NMSSM 2 body decays at tree-level, including both the extended neutralino and extended Higgs sectors.
- Special case decays
 - Next-to-Lightest SUSY Particle (NLSP) 2 body decays to gravitinos in the MSSM at tree level.
 - Chargino decays to pions at small mass splittings.

Advantages:

All in one spectrum generation and decay calculation, straightforward to use, easily linked with other codes.
Implementation:

- 2 body and loop decays are *tested hard-coded expressions*
 - susy decays validated extensively against sdecay and sphenon
 - higgs decays against hdecay
 - NMSSM decays against NMSSMTools

- 3 body decays are hard-coded and evaluated via single one-dimensional integration via dgauss.

- Extensively, rigorously tested against many other codes and scanning over (N)MSSM parameter space.

- Output can be read straight into further programs such as Pythia.

Assumptions:

- R-parity conservation (RPC)
- No additional CPV relative to SM. CP conservation in extended Higgs sector in NMSSM.
- No additional flavour violation relative to SM
- Only sfermion mixing in 3rd generation.

\[R_p = (-1)^{(3(B-L)+2S)} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_t \end{pmatrix} \]

\[\theta_u = \theta_d = \theta_c = \theta_s = \theta_e = \theta_\mu = 0 \quad \theta_t, \theta_b, \theta_\tau \neq 0 \]
MSSM Susy decays $1 - \tilde{\tau}_1$

- Validation plots (here compared against sdecay of susyhit) e.g. stop1: $\tilde{\tau}_1$
Higgs decays 1 – BRs at $m_h = 125$ GeV

- Comparison of BRs for SM like higgs – SoftSusy Decays module vs hdecay program of susyhit

NLO QCD corrections included for $h \rightarrow qq$ and $h \rightarrow gg$ decays:
 - 1-loop for $h \rightarrow qq$
 - 2-loop for $h \rightarrow gg$

pMSSM point with $m_h = 125$ GeV

Differences observed due to different mass choices, scale choices and scheme choices
Susy 3 body decays

\[\Gamma(1 \rightarrow N) = \int \ldots \int_N \frac{S(2\pi)^4 |M|^2}{2m} \delta^{(4)}(P - \sum_{i=1}^{n} p_i) \prod_{i=1}^{n} \frac{d^3 p_i}{(2\pi)^3 2E_i} \]

- Each additional decay particle suppresses \(\Gamma \) (PW)
- 2 body favoured over 3 body, but when 2 body are not kinematically allowed, 3 body decays become important -> key to searching tough regions of parameter space.
- Compressed spectra: \(m_{\text{decay}} - m_{\text{Susy product}} < m_{\text{SM}} \):
 - when \(m_{Zi} - m_{Zj} < m_Z \) no 2 body modes are kinematically available
 - but 3 body modes allowed:
$1 \rightarrow 3$ decays: Gluino example

1 -> 2 Decays forbidden as products (squarks + quarks) heavier than gluino

1 -> 3 Decays to Neutralino and fermion antifermion allowed

Spectrum Plot generated with shaplot of pylha-3.2.0: Buckley arXiv:1305.4194
1 \rightarrow 3$ decays Gluino Mass Scan

![Diagram showing decay rates vs. gluino mass](chart.png)

- $g \rightarrow Z_1 qq$
- $g \rightarrow Z_2 qq$
- $g \rightarrow Z_3 qq$
- $g \rightarrow Z_4 qq$
- $g \rightarrow W_1^+ qq$
- $g \rightarrow W_2^+ qq$
- $g \rightarrow st1 t$
- $g \rightarrow sb1 b$
- $g \rightarrow st2 t$
- $g \rightarrow sb2 b$
- $g \rightarrow sq q$
1 → 3 decays Gluino Mass Scan

- All 3 body decays checked in detail against alternative programs.
- SoftSusy reduces the integrals to 1D integrals and then does adaptive Gaussian integration.
- SPheno has similar approach.
- Susyhit does a 2D integration
- All results match – variation due to input parameter choices
Special cases - Chargino decays to Pions

- **AMSB models** have Wino-like LSP.
- AMSB therefore has characteristically have small chargino-LSP mass splittings.
- Compressed spectra means for $\Delta m < 1\text{GeV}$ **decays to pions** are dominant.
- Beyond that 3 body decays to LSP + lepton pairs are most important.
Special cases - NLSP decays to gravitinos

- In GMSB can get LSP gravitino.
- Couplings inherited from goldstino – can get signatures at LHC.
- Displaced vertex and other signatures.
- Included for gluinos, neutralinos, squarks and sleptons.

\[\Gamma(NLSP \rightarrow LSP \text{ gravitino}(G) + SM) \propto \frac{(m_{NLSP}^2 - m_{SM}^2)^4}{m_{NLSP}^3 m_G^2 M_{Pl}^2} \]
Add gauge singlet chiral superfield S -> one new SUSY fermion (singlino) and 2 new Susy scalars

$$W = \bar{u}^c h_u \tilde{Q} \tilde{H}_u - \bar{d}^c h_d \tilde{Q} \tilde{H}_d - \bar{e}^c h_e \tilde{L} \tilde{H}_d + \lambda S \tilde{H}_u \tilde{H}_d + \frac{1}{3} \kappa S^3$$

- Singlino \tilde{S} mixes with neutralinos $\chi^0_1, \chi^0_2, \chi^0_3, \chi^0_4$ -> 5 neutralinos
- Scalars form 2 extra higgses bosons, assuming CP conservation in higgs sector -> 1 extra CP even higgs h_3
 + 1 extra CP odd higgs A_2

NMSSM therefore has extended Higgs sector and extended neutralino sector:

- 7 Higgs bosons: 3 CP even, 2 CP odd, 2 Charged Higgses (H+ and H-)
- 5 Neutralinos: Mix of the 2 Higgsinos, 1 neutral Wino and 1 bino (or equaivalently of 1 Zino and 1 photino) and 1 Singlino

Motivations:
- μ problem of MSSM resolved in NMSSM - Give \tilde{S} a vev -> dynamically generate $\mu = \lambda \langle S \rangle$ at Susy scale -> No μ problem!
- Higher higgs masses - masses enhanced by extra $\kappa \langle S \rangle$ term -> larger m_h, allows less fine-tuned stop masses!

Ellwanger, Hugonie, Teixeira arXiv:0910.1785
NMSSM Z3 violating point with $m_0 = 400\, GeV$, $m_{1/2} = 350\, GeV$, $\tan\beta = 10$, $\text{sign}(\mu) = +1$, $A_0 = -300\, GeV$, $\lambda = 0.1$, $\kappa = 0.1$, $\lambda(S) = 200\, GeV$ and $\xi_F = 100\, GeV$.

SoftSusy does both Z3 conserving and Z3 violating NMSSM decays.
NMSSM Decays

• 3 CP even neutral Higgs states mix to form physical Higgses.
• For our point we split into MSSM doublet + singlet and h_2 is dominantly singlet:

\[R = \begin{pmatrix} 0.106 & 0.992 & -0.065 \\ 0.029 & 0.063 & 0.998 \\ 0.994 & -0.107 & -0.022 \end{pmatrix} \]
How it works 1

1 input file only required

Choose model
MSSM sugra, amsb,.gmsb
NMSSM etc

Set SM inputs

Set parameters at GUT scale

Set flags for decay process – decays on/off, 1->3, gravitinos etc

Set spectrum generator requirements – precision, no. of loops, gravitino mass,
Output file in SLHA form

Output file in SLHA form

<table>
<thead>
<tr>
<th>#</th>
<th>PDG</th>
<th>Width</th>
<th>heavy higgs decays</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.06774318e-06</td>
<td>2</td>
<td>4</td>
<td># H -> c cb</td>
</tr>
<tr>
<td>3.07203843e-04</td>
<td>2</td>
<td>3</td>
<td># H -> s sb</td>
</tr>
<tr>
<td>7.75300359e-01</td>
<td>2</td>
<td>5</td>
<td># H -> b bb</td>
</tr>
<tr>
<td>1.41115765e-01</td>
<td>2</td>
<td>6</td>
<td># H -> t tb</td>
</tr>
<tr>
<td>2.09145471e-04</td>
<td>2</td>
<td>13</td>
<td># H -> mu- mu+</td>
</tr>
<tr>
<td>6.51058377e-02</td>
<td>2</td>
<td>15</td>
<td># H -> tau- tau+</td>
</tr>
<tr>
<td>3.12257645e-03</td>
<td>2</td>
<td>1000022</td>
<td># H -> ~chi_10 ~chi_10</td>
</tr>
<tr>
<td>7.36883175e-03</td>
<td>2</td>
<td>1000022</td>
<td># H -> ~chi_10 ~chi_20</td>
</tr>
<tr>
<td>2.46467076e-03</td>
<td>2</td>
<td>25</td>
<td># H -> h h</td>
</tr>
<tr>
<td>3.21818444e-05</td>
<td>2</td>
<td>1000012</td>
<td># H -> ~nu_el ~nu_el*</td>
</tr>
<tr>
<td>1.04662821e-04</td>
<td>2</td>
<td>2000011</td>
<td># H -> ~e_R- ~e_R+</td>
</tr>
<tr>
<td>3.22870171e-05</td>
<td>2</td>
<td>1000014</td>
<td># H -> ~nu_mul ~nu_mul*</td>
</tr>
<tr>
<td>1.04613078e-04</td>
<td>2</td>
<td>2000013</td>
<td># H -> ~mu_R- ~mu_R+</td>
</tr>
<tr>
<td>6.26454473e-06</td>
<td>2</td>
<td>1000013</td>
<td># H -> ~mu_L- ~mu_L+</td>
</tr>
<tr>
<td>8.85412879e-06</td>
<td>2</td>
<td>2000013</td>
<td># H -> ~mu_R- ~mu_L+</td>
</tr>
<tr>
<td>5.82149371e-05</td>
<td>2</td>
<td>1000016</td>
<td># H -> ~nu_taul ~nu_taul*</td>
</tr>
<tr>
<td>2.09873868e-05</td>
<td>2</td>
<td>1000015</td>
<td># H -> ~tau_1- ~tau_1+</td>
</tr>
<tr>
<td>1.80021745e-03</td>
<td>2</td>
<td>1000015</td>
<td># H -> ~tau_1- ~tau_2+</td>
</tr>
<tr>
<td>1.80021745e-03</td>
<td>2</td>
<td>2000015</td>
<td># H -> ~tau_2- ~tau_1+</td>
</tr>
<tr>
<td>1.38212187e-06</td>
<td>2</td>
<td>22</td>
<td># H -> gamma gamma</td>
</tr>
<tr>
<td>3.17220840e-04</td>
<td>2</td>
<td>21</td>
<td># H -> gluon gluon</td>
</tr>
<tr>
<td>4.79838916e-04</td>
<td>2</td>
<td>24</td>
<td># H -> W+ W-</td>
</tr>
<tr>
<td>2.34232999e-04</td>
<td>2</td>
<td>23</td>
<td># H -> Z Z</td>
</tr>
</tbody>
</table>

One Output File with all the information you need generated in 0.2s

One such table for each susy and Higgs particle in the (N)MSSM.

Can be read straight into other programs – Pythia, Herwig, etc
SoftSusy is a widely used program already used for spectrum generation and susy parameter calculation in many areas; from experimental searches to fits to data, electroweak, astrophysical observables

SoftSusy-4.0 is a major upgrade to include a decay calculator -> out now!

- SUSY 1->2 at tree-level
- SUSY relevant 1->3 at tree-level
- Higgs 1->2 at tree-level
- Higgs -> VV* -> Vffbar (1->3)
- Higgs -> γγ, Zγ, gg (1-loop)
- Decays to gravitinos
- NMSSM 1->2 at tree-level Susy sector (extended neutralinos)
- NMSSM 1->2 extended higgs sector (tree and 1-loop for h -> γγ, Zγ, gg)

Available at: https://softsusy.hepforge.org/
Conclusions and Future Developments

❖ Main benefits: 1) NMSSM included
2) Ease and Usability – all-in-one
3) Consistency throughout
4) Comparison with other codes -> theoretical error

❖ Currently only RPC, mainly tree-level and not all three body decays included, in future wish to extend to include:
 - 3 body decays of sfermions (work in progress)
 - NMSSM 3 body decays
 - more loop-corrected decays
 - RPV couplings

Download program and manual from http://softsusy.hepforge.org/

Thankyou for Listening!
Any Questions?
Section 6

Extra Slides
What Theoretical Knowledge/Tools are required?

- Require tools to calculate all of these for every point in MSSM/NMSSM Parameter space.

- Can then compare against LHC results to discover/rule out different SUSY parameters/models.
Framework for Susy searches

SoftSusy
SPECTRUM
GENERATOR

• SoftSusy has had a variety of uses, for example here is a small subset:

➢ Susy searches at 7/8/13TeV for CMSSM RPC and RPV benchmark points at LHC.

➢ AMSB searches for long-lived particles – quasi degenerate charginos.

➢ pMSSM studies, mT2 variable study (Allanach, Barr, Dafinca, Gwenlan; arXiv:1105.1024)

➢ Parts are used in GAMBIT – fitting code for BSM, (Athron et al, arXiv:1705.07936v1)

➢ DM global fits (e.g. Bagnaschi et al arXiv:1612.05210, Allanach et al. arXiv:0705:0487)

• SoftSusy is a spectrum generator and decay calculator, determines properties of susy particles:
 - Masses
 - susy parameters (mixings etc)
 - branching ratios

• Softsusy Decay calculator – Extend these uses further into exclusions via decay branching ratios incorporated in the full MSSM/NMSSM.
Uses of SoftSusy

➢ RPV searches in the CMSSM
➢ AMSB searches for long-lived particles – quasi degenerate charginos.
➢ pMSSM studies, mT2 variable study \((\text{Allanach, Barr, Dafinca, Gwenlan; arXiv:1105.1024})\)
➢ Recent ATLAS and CMS searches for stop signatures: \((\text{ATLAS-CONF-2017-037 and -034})\)
➢ Parts are used in GAMBIT – fitting code for BSM, \((\text{Athron et al, arXiv:1705.07936v1})\)
➢ LHC DM Searches and Interpretations \((\text{ATLAS Collaboration, JHEP 1609 (2016) 175})\)
➢ Theoretical analyses of GUT scale boundary conditions – can set own models of susy breaking and implement the running. \((\text{JHEP 0110 (2001) 024})\)
SoftSusy Decay Calculator

- **SOFTSUSY-4.0** (New version!):
 - As before + **DECAY CALCULATOR**
 - Major extension
 - Allows all-in-one spectrum generation and decay calculation
 - All tree-level SUSY and Higgs two body decays in MSSM and NMSSM +
 relevant three body and loop decays!

 - **All-in-One** spectrum generation and decay calculation
 - Ease and Usability
 - Contains all phenomenologically relevant decays:
 - SUSY
 - Higgs
 - Gravitino
 - NMSSM

 All in one place!

 - Provides additional code for decay BRs comparison – improves
 knowledge of theoretical errors and variation involved.
SoftSusy Spectrum Generator

1. **SM Inputs (Msbar) at M_Z -> alpha, alphas, G_F, mb, mt
2. Susy mass default guesses – definitely wrong
3. Run in MSSM up to GUT scale
4. Compare run values with GUT scale Boundary conditions on masses, e.g. M_0, $M_1/2$
5. Take boundary conditions at GUT scale and run back down to M_Z
6. Fixed Point Iteration: Repeat 3-5 until get convergence.
7. Output: Susy and Higgs masses, mixings, couplings, gauge couplings at Susy Scale

Threshold corrections:

- $O \left(\log \frac{m_{SUSY}^2}{m_Z^2} \right)$
- $O \left(\frac{m_Z^2}{m_{SUSY}^2} \right)$

Finite terms: $O \left(\frac{m_Z^2}{m_{SUSY}^2} \right)$
Decay calculator Specifics

Decay Calculator (decays.cpp)

- NMSSM switch (bool nmsslslt)
- Calls decay functions with MSSM couplings, 4x4 neutralino mixing Matrix, standard higgs sector (5 higgses)
- Calls decay functions with NMSSM couplings, 5x5 neutralino mixing Matrix, extended higgs sector (7 higgses)
- 1 → 3 decays?
- Gravitinos?
- Partial Widths Branching Ratios (BRs)
- Populates Array of Decays

Masses and parameters from SoftSusy Spectrum calculator

Single Output File (lesHouchesOutput.txt) in SLHA form
SoftSusy Decays *(SOFTSUSY-4.0)*

- All $1 \rightarrow 2$ decays of MSSM SUSY particles.
- All $1 \rightarrow 2$ higgs decays in MSSM.
- Phenomenologically Relevant $1 \rightarrow 3$ decays in MSSM (e.g. for compressed spectra).
- Higgs 1-loop decays: $h \rightarrow \gamma \gamma, Z \gamma, gg$ in MSSM and NMSSM.
- Higgs $1 \rightarrow 3$ decays via VV^*: $h \rightarrow VV^* \rightarrow V \ f \bar{f}$.
- Decays to gravitinos in MSSM.
- All $1 \rightarrow 2$ decays of SUSY and higgs particles in NMSSM.
- QCD corrections included for higgs decays to quarks and gluons.
MSSM Susy decays $1 - \chi_4^0$

- Validation plots (here compared against sdecay of susyhit) e.g. neut 4: χ_4^0

Spectrum Plot generated with slhaplot of pyslha-3.2.0:
Buckley arXiv:1305.4194
MSSM Susy decays $1 - \chi_4^0$

- Validation plots (here compared against sdecay of susyhit) e.g. neut 4: χ_4^0

\[
\chi_4^0 \rightarrow \text{leptons and sleptons}
\]

Spectrum Plot generated with slhaplot of pyslha-3.2.0:
Buckley arXiv:1305.4194
MSSM Susy decays $1 - \chi_4^0$

- Validation plots (here compared against sdecay of susyhit) e.g. neut 4: χ_4^0

\[
\chi_4^0 \rightarrow \chi_i^+ \n\]

![Spectrum Plot generated with slhaplot of pyslha-3.2.0: Buckley arXiv:1305.4194](image)
MSSM Susy decays 1 – χ_4^0

- Validation plots (here compared against sdecay of susyhit) e.g. neut 4: χ_4^0

Spectrum Plot generated with slhaplot of pyslha-3.2.0:
Buckley arXiv:1305.4194
Higgs decays 1 – BRs at $m_h = 125$GeV

- Comparison of BRs for SM like higgs – **SoftSusy** Decays module vs hdecay program of susyhit

<table>
<thead>
<tr>
<th>SOFTSUSY with QCD corrections</th>
<th>SOFTSUSY with SUSYHIT’s masses and QCD corrections</th>
<th>HDECAY-3.4 with same QCD corrections</th>
<th>mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW/GeV</td>
<td>BR</td>
<td>PW/GeV</td>
<td>BR</td>
</tr>
<tr>
<td>2.25e-04</td>
<td>4.03e-02</td>
<td>2.25e-04</td>
<td>4.31e-02</td>
</tr>
<tr>
<td>1.62e-06</td>
<td>2.91e-04</td>
<td>1.62e-06</td>
<td>3.11e-04</td>
</tr>
<tr>
<td>3.96e-03</td>
<td>7.10e-01</td>
<td>3.60e-03</td>
<td>6.90e-01</td>
</tr>
<tr>
<td>8.52e-07</td>
<td>1.53e-04</td>
<td>9.17e-07</td>
<td>1.76e-04</td>
</tr>
<tr>
<td>2.61e-04</td>
<td>4.67e-02</td>
<td>2.59e-04</td>
<td>4.97e-02</td>
</tr>
<tr>
<td>1.06e-05</td>
<td>1.89e-03</td>
<td>9.24e-06</td>
<td>1.77e-03</td>
</tr>
<tr>
<td>2.71e-04</td>
<td>4.86e-02</td>
<td>2.72e-04</td>
<td>5.22e-02</td>
</tr>
<tr>
<td>6.74e-06</td>
<td>1.21e-03</td>
<td>5.88e-06</td>
<td>1.13e-03</td>
</tr>
<tr>
<td>7.61e-04</td>
<td>1.36e-01</td>
<td>7.61e-04</td>
<td>1.46e-01</td>
</tr>
<tr>
<td>8.44e-05</td>
<td>1.51e-02</td>
<td>8.44e-05</td>
<td>1.62e-02</td>
</tr>
</tbody>
</table>

NLO QCD corrections included for h \rightarrow qq and h \rightarrow gg decays:
- 1-loop for h \rightarrow qq
- 2-loop for h \rightarrow gg
Higgs decays 2 – BRs as mh scanned up to 200GeV

- BRs of lightest higgs as mass scanned – **SoftSusy** Decays plot on left, classic plot from LHC Higgs cross section working group on right:

\[\text{SoftSusy-4.0} \]

h → VV* → Vq\bar{q}

3 body decay for \(m_h < 2m_V \)

Calculation performed fully analytically including Passarino Veltman Reduction.

- No numerical integration required as all integrals performed by hand.

Formulae hard-coded into SoftSusy.

Included in MSSM and NMSSM

\[
\Gamma(h/H \rightarrow ZZ^*) = \frac{G_F^2 m_h m_W^4 c_W^2}{64\pi^3 \cos^4 \theta_W} F(\epsilon_Z) \left[7 - \frac{40}{3} \sin^2 \theta_W + \frac{160}{9} \sin^4 \theta_W \right].
\]

\[
\Gamma(h/H \rightarrow WW^*) = \frac{3G_F^2 m_W^4 m_h^2 c_W^2}{16\pi^3} F(\epsilon_W),
\]

\[
F(\epsilon_V) = \frac{3(1 - 8\epsilon_V^2 + 20\epsilon_V^4)}{\sqrt{4\epsilon_V^2 - 1}} \cos^{-1} \left[\frac{3\epsilon_V^2 - 1}{2\epsilon_V^3} \right] - (1 - \epsilon_V^2)\left(\frac{47}{2} \frac{e_V^2}{e_V^2} - \frac{13}{2} + \frac{1}{\epsilon_V} \right) - 3(1 - 6\epsilon_V^2 + 4\epsilon_V^4) \log(\epsilon_V).
\]

\[
\epsilon_V = \frac{m_V}{m_h}
\]
$\tilde{g} \rightarrow \tilde{\chi}_i^0 q\bar{q}$

Fermion masses accounted for in:
- Yukawa couplings
- Squark mixing
- Matrix element
- Final state quark masses

Important to account for fermion masses in final states as decays relevant in compressed regions close to thresholds.

Formulae from Baer and Tata, (checked against sPheno - essentially a rewriting of sPheno formulae)

\[
\Gamma(\tilde{g} \rightarrow t\bar{t}\tilde{Z}_i) = \frac{\alpha_s}{8\pi^4 m_{\tilde{g}}} \left[\Gamma_{\tilde{t}_1} + \Gamma_{\bar{t}_2} + \Gamma_{\tilde{t}_1\bar{t}_2} \right].
\]

\[
\Gamma_{\tilde{t}_1} = \Gamma_{LL}(\tilde{t}_1) \cos^2 \theta_t + \Gamma_{RR}(\tilde{t}_1) \sin^2 \theta_t - \sin \theta_t \cos \theta_t \left[\Gamma_{L_iR_1}(\tilde{t}_1) + \Gamma_{L_iR_2}(\tilde{t}_1) + \Gamma_{L_2R_1}(\tilde{t}_1) + \Gamma_{L_2R_2}(\tilde{t}_1) \right].
\]

\[
\Gamma_{\tilde{t}_2} = \Gamma_{LL}(\tilde{t}_2) \sin^2 \theta_t + \Gamma_{RR}(\tilde{t}_2) \cos^2 \theta_t + \sin \theta_t \cos \theta_t \left[\Gamma_{L_iR_1}(\tilde{t}_2) + \Gamma_{L_iR_2}(\tilde{t}_2) + \Gamma_{L_2R_1}(\tilde{t}_2) + \Gamma_{L_2R_2}(\tilde{t}_2) \right].
\]

\[
\Gamma_{\tilde{t}_1\bar{t}_2} = \left[\Gamma_{LL}(\tilde{t}_1, \tilde{t}_2) + \Gamma_{RR}(\tilde{t}_1, \tilde{t}_2) \right] \sin \theta_t \cos \theta_t + \Gamma_{LR}(\tilde{t}_1, \tilde{t}_2) \cos^2 \theta_t + \Gamma_{RL}(\tilde{t}_1, \tilde{t}_2) \sin^2 \theta_t.
\]

4 diagrams – stop1 and stop2, t and u channel
4 “squared” (i.e. non interference) contributions
6 interference contributions between the different diagrams
\(\tilde{g} \rightarrow \tilde{\chi}_i^+ q' \tilde{q} \)

Fermion masses accounted for in:
- Yukawa couplings
- Squark mixing
- Mt in Matrix element
- Final state quark masses

Important to account for fermion masses in final states as decays relevant in compressed regions close to thresholds.

Formulae from Baer and Tata, (checked against sPheno – essentially a rewriting of sPheno formulae)

4 diagrams – stop1, stop2, sbottom1, sbottom2 for each of \(q' \tilde{q} \) and \(q \tilde{q}' \)
4 “squared” (i.e. non interference) contributions
6 interference contributions between the different diagrams

\[
\Gamma(\tilde{g} \rightarrow t\bar{b} \tilde{W}_i^-) = \frac{\alpha_s}{16\pi^2m_{\tilde{g}}} (\Gamma_{i_1} + \Gamma_{i_2} + \Gamma_{i_1 i_2} + \Gamma_{\tilde{b}_1} + \Gamma_{\tilde{b}_2} + \Gamma_{\tilde{b}_1 \tilde{b}_2} + \Gamma_{\tilde{b}_2 \tilde{b}_1} + \Gamma_{\tilde{b}_2 \tilde{b}_2}).
\]

Mb neglected in matrix element (but accounted for in finite state masses), mt kept throughout.
\[\tilde{\chi}_i^0 \rightarrow \tilde{\chi}_j^0 q\bar{q} \]

Fermion masses accounted for in:
- Yukawa couplings
- Squark mixing
- Final state quark masses

Calculation in Feynman gauge so get goldstone contribution which is essentially longitudinal component of the Z.

6 diagrams – Z, h, H, A, \(\tilde{q}_1, \tilde{q}_2 \)
6 “squared” (i.e. non interference) contributions (Z, h, H, A, \(\tilde{q}_1, \tilde{q}_2 \))
10 interference contributions between the different diagrams (no CP even CP odd interference or Higgs Z interference as quark masses dropped in matrix element)

\[
\Gamma(\tilde{Z}_i \rightarrow \tilde{Z}_j f\bar{f}) = \frac{N_c}{512\pi^3|m_{\tilde{Z}}|^3} (\Gamma_Z + \Gamma_h + \Gamma_H + \Gamma_A + \Gamma_{hH} + \Gamma_f - 4\Gamma_{h\tilde{f}_1} - 4\Gamma_{h\tilde{f}_2} - 4\Gamma_{H\tilde{f}_1} - 4\Gamma_{A\tilde{f}_1} - 4\Gamma_{A\tilde{f}_2} + 4\Gamma_{Z\tilde{f}_1} + 4\Gamma_{Z\tilde{f}_2} - 4\Gamma_{ZA} - 4\Gamma_{G\tilde{f}_1} - 4\Gamma_{G\tilde{f}_2} + 2\Gamma_{GA} - 4\Gamma_{ZG} - 4\Gamma_{G\tilde{f}_1} - 4\Gamma_{G\tilde{f}_2}).
\]

Quark masses in matrix element approximated to zero as q cannot be top as then 2 body modes are available anyway.

Important to account for fermion masses in final states as decays relevant in compressed regions close to thresholds.

Formulae essentially just a rewriting of those in sPheno
\[\chi_i^0 \rightarrow \chi_j^+ q' \bar{q} \]

Fermion masses accounted for in:
- Yukawa couplings
- Squark mixing
- Matrix elements
- Final state quark masses

6 diagrams – \(W^+, H^-, \tilde{q}_1^c, \tilde{q}_2^c, \tilde{q}_1, \tilde{q}_2 \)
6 “squared” (i.e. non interference) contributions \(W^+, H^-, \tilde{q}_1^c, \tilde{q}_2^c, \tilde{q}_1, \tilde{q}_2 \)
15 interference contributions between the different diagrams

\[
\Gamma = \frac{N_c}{512\pi^3|m_{Z_i}|^3} \left[\Gamma_W + \Gamma_{\tilde{f}_1} + \Gamma_{\tilde{f}_2} + \Gamma_{\tilde{f}_3} - 2\Gamma_{\tilde{f}_1,\tilde{f}_2} - 2\Gamma_{\tilde{f}_1,\tilde{f}_3} - 2\Gamma_{\tilde{f}_2,\tilde{f}_3} + 2\Gamma_{WH^*}
ight. \\
+ 2\Gamma_{WH} + \Gamma_{H^*} + \Gamma_{G} - 2\Gamma_{W\tilde{f}_1} - 2\Gamma_{W\tilde{f}_2} - 2\Gamma_{W\tilde{f}_3} - 2\Gamma_{W\tilde{f}_4} + 2\Gamma_{H^*G} - 2\Gamma_{G\tilde{f}_1} \\
- 2\Gamma_{G\tilde{f}_2} - 2\Gamma_{G\tilde{f}_3} - 2\Gamma_{G\tilde{f}_4} - 2\Gamma_{H^*\tilde{f}_1} - 2\Gamma_{H^*\tilde{f}_2} - 2\Gamma_{H^*\tilde{f}_3} - 2\Gamma_{H^*\tilde{f}_4} + 2\Gamma_{\tilde{f}_1,\tilde{f}_2} + 2\Gamma_{\tilde{f}_1,\tilde{f}_3} + 2\Gamma_{\tilde{f}_2,\tilde{f}_3}
\]

Quark masses kept throughout matrix elements throughout Dirac algebra – therefore have \(WH^* \) interference too.
Only really relevant for first 2 generations as for t and b then 2 body modes available.
Special cases - Chargino decays to Pions

- Lifetimes of Chargino NLSP long enough to observe in LHC.
- High pT chargino tracks decay to soft pions or leptons + large MET (neutralino LSP).
- Kinks/disappearing tracks observed in one-pronged decays $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 \pi^+$.
Gravitino decays - theory

- **Susy -> local symmetry** to incorporate gravity -> spin 2 graviton.

 -> spin 3/2 susy partner: **gravitino**.

- Spontaneous susy breaking (SSB) -> massless goldstone fermion of spin 1/2 : **goldstino**.

- In SSB, massless gravitino “eats” massless goldstino -> becomes gravitino’s longitudinal dof -> **gravitino becomes massive**.

- In SSB scenarios, particularly GMSB the gravitino can be LSP.

- Gravitino inherits stronger coupled longitudinal components.

- Decays **NLSP -> LSP gravitino + SM** to be observable at colliders
Gravitino decays - plot

Distances travelled for neutralino NLSP decays to gravitino(G)

\[\tau = \frac{\bar{h}}{\Gamma} \]

- G \gamma
- G Z
- G h

\[V_{\tau \gamma}(m) \]

\[m_{\text{gravitino}} (\text{GeV}) \]

Cern Seminar 14/05/18 Thomas Cridge
NMSSM Key parameters

 Crucially – NMSSM decays not included in most alternative programs – only NMSSMTools or SARAH + SPheno together.

\[W = \hat{u}^c h_u \hat{Q} \hat{H}_u - \hat{d}^c h_d \hat{Q} \hat{H}_d - \hat{e}^c h_e \hat{L} \hat{H}_d + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3 \]

- \(\lambda \) - coupling of singlino to higgsinos, neutralino mixing, higgs masses
- \(\kappa \) - contributes to higgs masses
- \(A_\lambda \) - soft susy breaking parameter, trilinear couplings
- \(A_\kappa \) - soft susy breaking parameter, trilinear couplings
- \(\tan \beta = \langle H_u \rangle / \langle H_d \rangle \) - ratio of higgs vevs, neutralino mixing via higgsinos
- \(\mu_{\text{eff}} = \lambda \langle S \rangle \) - higgsino masses, neutralino mixing

N.B. As \(\hat{S} \) is gauge singlet it only couples to non-higgs particles via mixing with other neutralinos.
QCD Corrected Higgs Decays

- Higgs decays to quarks and to gluons include NLO QCD corrections (including susy-QCD corrections), included for both MSSM and NMSSM.

\[h \rightarrow q\bar{q} \]
- 1-loop corrections are a simple additional multiplicative factor.
- All differences between MSSM and NMSSM are in the tree-level part, the multiplicative factor for the QCD corrections is the same.

\[\Gamma(h \rightarrow q\bar{q})_{QCD_{corr}} = \Gamma(h \rightarrow q\bar{q})_{tree} \left(1 + \frac{4\alpha_s(m_h)}{3\pi} \left[\frac{A(\tilde{\beta})}{\tilde{\beta}} + \frac{3 + 34\tilde{\beta}^2 - 13\tilde{\beta}^4}{16\tilde{\beta}^3} \log \frac{1 + \tilde{\beta}}{1 - \tilde{\beta}} + \frac{3}{8\tilde{\beta}^2} (7\tilde{\beta}^2 - 1) \right] \right). \]

\[h \rightarrow gg \]
- 2-loop corrections are NLO as process is 1-loop.
- Both QCD and SUSY-QCD corrections included; SUSY-QCD corrections act only on squark loops, QCD corrections act on quark and squark loops.
- All differences between MSSM and NMSSM are in the tree-level part.

\[\Gamma(\phi \rightarrow gg)_{1-loop+QCD_{corr}} = \frac{G_F^2 m_\phi^3}{128\pi^3} \left[\frac{3}{8} \left(\delta_{FQCD}^{\phi \rightarrow gg} \right) |I_{loop}^\phi|^2 + \text{Re}(I_{loop}^\phi)^* I_{loop}^\phi \right]. \]

\[\delta_{FQCD}^{\phi \rightarrow gg} = 1 + \frac{\alpha_s(m_\phi)}{\pi} \left(\frac{95}{4} - \frac{7}{6} N_f \right), \quad \delta_{FQCD}^{\phi \rightarrow Higgs} = 1 + \frac{\alpha_s(m_\phi)}{\pi} \left(\frac{97}{4} - \frac{7}{6} N_f \right), \quad \delta_{QCD} = \frac{17\alpha_s(m_\phi)}{6\pi}. \]