

Long-lived particles (LLP) with Delphes and MadAnalysis 5

Eric CONTE, Benjamin FUKS, Michele SELVAGGI

Outlines

- 1. Review of Delphes v3.4.1 & Long-lived particles
 - 2. The MadAnalysis 5 v1.6 tune for Delphes
 - 3. Recast analysis benchmark: CMS-EXO-16-022
 - 4. Perspectives

Outlines

- 1. Review of Delphes v3.4.1 & Long-lived particles
 - 2. The MadAnalysis 5 v1.6 tune for Delphes
 - 3. Recast analysis benchmark: CMS-EXO-16-022
 - 4. Perspectives

Motivations for Delphes

Overview of Delphes

- **DELPHES** is a very-fast-simulation for generic detector:
 - ATLAS & CMS detectors
 - Upgrade of ATLAS & CMS
 - LHCb
 - Future detectors: ILC, FCC, CEPC
- Output in ROOT format
- The simulation is split into generic modules.
- → Each module is devoted to a function.
- The detector simulation is totally described by a card (text file in TCL language), containing:
 - The sequence of the modules that are needed
 - How they interact between themselves
 - The setting of this module.
- The Delphes development model is communitybased.

- JHEP 02 (2014) 057
- J.Phys.Conf.Ser. 523 (2014) 012033
- J.Phys.Conf.Ser. 608 (2015) 1, 012045

Overview of Delphes

Requirements:

Package	Utility
ROOT 6	Main framework & data format
TCL	Language of detector card
FastJet	Jet-clustering algorithm, pile-up

- \rightarrow To be installed
- \rightarrow To be installed
- Encapsulated in the delphes package

Extra programs:

- EVE (former FROG): program of event vizualisation
- DelphesAnalysis: reading
 Delphes ROOT file with Python

Site web: https://cp3.irmp.ucl.ac.be/projects/delphes

Delphes Dataflow

Example of dataflow diagram:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/DataFlowDiagram

Delphes Dataflow

Example of dataflow diagram:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/DataFlowDiagram

Main features for CMS/ATLAS detector

Tracking

- no genuine tracker simulation
- charged particles are propagated until the ECAL calorimeter
- efficiency + resolution functions

Calorimetry

- segmentation of the ECAL & HCAL calorimetry into cells
- determining the energy fraction absorbed by the calorimeter
- smearing of the cell energy

Particle-flow algorithm

- get a better estimation of the momenta for charged particle
- determine if a energy deposit is more compatible with a charged + neutral hypothesis

Jet reconstruction

- jet-clustering algorithm of FastJet
- jet energy scale
- b and tau tagging
- jet substructure can be probed via FastJet/contrib

Main features for CMS/ATLAS detector

Pile-up simulation:

The consequences on the reconstruction:

- reduced efficiency
- worsened resolution (jets, MET)
- degraded isolation
- fake tracks, jets

Delphes simulation of this effect:

- injecting several interactions (required an extra MinBias events sample)
- computing the pile-up density ρ with the GridMEdianBackgroundEstimator approach of FastJet
- computing jet area during jet-clustering process
- (neutral and charged) pile-up subtraction @ reconstruction level
- degrading isolation of leptons & photons

Or using the PUPPI method (Pileup Per Particle Identification)

Official ATLAS and CMS TCL-descriptions are not designed for LLP exotic signatures. Let's take the example of a LL neutralino decaying into II'v

Case where the neutralino decays before the first layer of the tracker

- → Prompt leptons
- → The simulation is correct.

Official ATLAS and CMS TCL-descriptions are not designed for LLP exotic signatures. Let's take the example of a LL neutralino decaying into II'v

Case where the neutralino decays inside the tracker volume

- → Leptons are considered as prompt leptons.
- → Tracking efficiencies are not correct.
- → The card needs to be modified.

Official ATLAS and CMS TCL-descriptions are not designed for LLP exotic signatures. Let's take the example of a LL neutralino decaying into II'v

Official ATLAS and CMS TCL-descriptions are not designed for LLP exotic signatures. Let's take the example of a LL neutralino decaying into II'v

Case where the neutralino decays outside the tracker volume

- → The neutralino is considered as MET.
- → The simulation is correct.

Other modules can be relevant for LLP

Two complementary Delphes modules could be interesting for LLP analyses:

- TRACKSMEARING: smearing the track momentum according to the d0 and dz parameters
- VERTEXFINDERDA4D: determine the vertices from tracks using deterministic annealing and timing information

Outlines

- 1. Review of Delphes v3.4.1 & Long-lived particles
 - 2. The MadAnalysis 5 v1.6 tune for Delphes
 - 3. Recast analysis benchmark: CMS-EXO-16-022
 - 4. Perspectives

What is MadAnalysis 5?

Producing special plots such as
 ME/PS merging validation plots
 (see talk devoted to merging)

 Applying a jet-clustering algorithm to your hadronic events

Writing the events in another data format.

Designing a sophisticated analysis in the **expert**mode

 Applying a fast-simulation detector (Delphes) to your hadronic events Recasting an existed
 analysis and computing a

 limit to a BSM signal

More details can be found on G. Chalons' talk Last version: v1.6 (finally) released on May 2018

Recasting strategy with MadAnalysis 5

Embedded Delphes tune

Detector very-fast-simulation

old way

Delphes MA5-Tune

Special tuning of the Delphes 3.0 package provided by MadAnalysis 5

- Reducing the ROOT size.
- Lepton & photon isolation done @ analysis level.
- More realistic parametrization of the btagging(mis-)efficiency @ analysis level.
- More info on generated particles.

new way

from MA5 v1.2

Delphes + MA5 card

Official Delphes release using special CMS/ATLAS detector cards provided by MadAnalysis 5

- Most of the features implemented in the official Delphes release.
- Other features are encapsulated into external Delphes modules.
- Lepton & photon isolation always done
 @ analysis level + improvement.

Embedded Delphes tune

Embedded Delphes tune

Special tune devoted to displaced leptons in MA5:

- → Special package devoted to LLP decaying in leptons
 https://madanalysis.irmp.ucl.ac.be/wiki/MA5LongLivedParticle
- If the LLP decays in the tracker volume, the proper efficiency is applied to displaced tracks by a new module MA5EfficiencyD0 (using parametrization of the CMS detector)

https://twiki.cern.ch/
twiki/bin/view/CMSPublic/
DisplacedSusyParametrisation
StudyForUser

```
CMS Simulation Preliminary (8 TeV)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 electron d<sub>0</sub> [cm]
```

```
set EfficiencyFormula {
  (d0<=20) * (-5.06107e-7 * d0**6 +
  0.0000272756 * d0**5 - 0.00049321 *
  d0**4 + 0.00287189 * d0**3 + 0.00522007
  * d0**2 -0.0917957 * d0 + 0.924921) +
  (d0>20) * (0.00) }
```

- If the LLP decays outside the tracker volume, the LLP is ignored by the simulation.
- Suits for neutralino-like LLP decaying into leptons
- Suits for squark-like / gluino-like LLP decaying into leptons (if the B-field effects can be neglected on the LLP)

Outlines

- 1. Review of Delphes v3.4.1 & Long-lived particles
 - 2. The MadAnalysis 5 v1.6 tune for Delphes
 - 3. Recast analysis benchmark: CMS-EXO-16-022
 - 4. Perspectives

CMS-EXO-16-022

- Energy in the center of mass of the collision: 13 TeV
- Integrated luminosity: **2.6 fb-1**
- Inspire link: http://inspirehep.net/record/1479633/

- Signal: $p p \rightarrow p p \rightarrow \tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \rightarrow b l$ in RPV-SUSY framework samples are generated with top squark masses between 200 and 1200 GeV and lifetimes over a range of 0.1 to 100 cm/c.
- Experimental signatures: a displaced vertex e-μ
- Online Selection: specific trigger e-μ displaced with pT> 38 GeV
- Offline Selection:

Criterion	Threshold for e	Threshold for μ				
η <	2.4					
pT >	42 GeV	40 GeV				
Isolation between e-μ: DR(e,μ)>0.5						
Relation isolation with DR=0.4 size cone >	0.065 for $1.57 < \eta < 2.4$ 0.035 for $ \eta < 1.4$	0.015				
d0 <	10 cm					

CMS-EXO-16-022

100 000 SR III 1000 $e |d_0| [\mu m]$ SR II CR III SR I CR II 100 CR IV CR I 0 100 00 100 200 500 1000 0 $\mu |d_0| [\mu m]$

Limit plot

Recasting implementation of the analysis

- Software: MA5 v1.6 + Delphes 3.4.1_Tracks with 8 TeV CMS tracking performance

Region	$c au_{\tilde{t}}$ [cm]	MA5	CMS	Difference [%]
SR-I	0.1	3.89	3.8	2.30
	1	4.44	5.2	14.51
	10	0.697	0.8	12.84
	100	0.0610	0.009	> 100%
SR-II	0.1	0.924	0.94	1.71
	1	3.87	4.1	5.61
	10	0.854	1.0	14.58
	100	0.0662	0.03	$\sim 100\%$
SR-III	0.1	0.139	0.16	12.84
	1	6.19	7.0	11.59
	10	4.45	5.8	23.56
	100	0.497	0.27	$\sim 100\%$

Critical review of this implementation

Agreement between MA – CMS:

- Agreement for cτ < 10 cm
- Discrepancy for $c\tau = 100$ cm: CMS efficiency parametrization not available for large d0 values

Limits of Delphes simulation (+ tune):

- No trigger definition but offline selection must have included the online selection.
- No pile-up simulation in the validation note but satisfaying agreement.
- No simulation of B-field on the stops particle but effects should be negligle.
 [coming soon]
- Efficiency and resolution map for leptons with large d0 values
- Stops decay outside the tracker-volume? R-hadrons interaction with matter?

Advantages of the Delphes simulation vs a parametric simulation?

- Selection based only on lepton tracks
- → Parametric simulation should give similar results
- → Need to find a new benchmark analysis using calorimetry information (MET, b-tagging, ...)

Outlines

- 1. Review of Delphes v3.4.1 & Long-lived particles
 - 2. The MadAnalysis 5 v1.6 tune for Delphes
 - 3. Recast analysis benchmark: CMS-EXO-16-022
 - 4. Perspectives

A plethora of LLP signatures

Future developments?

Other implementations are possible in Delphes+MA5:

Displaced objects can be achieved and are expected

Displaced jets:

Delphes must provided more information on jet shape. A new module must be created for clustering secondary vertices based on the displaced tracks matched to jets. Next analysis to recast: **CMS-EXO-16-003**

Displaced vertices:

To addition to the new module devoted to Displaced jets, a simple vertexing algorithm must be implemented. It can be done by relaxing the z-axis constraint on the existing VertexFinder module.

Other signatures are more delicate

- Disappearing tracks and kink require a genuine tracker simulation
- HSCP (Heavy Stable Charged Particle) with dE/dx detection way
- Stopped particles where MC events are not independent between themselves

Back-up

Example of analysis to recast

Example: ATLAS-CONF-2016-103 – displaced jets

- Models tested: hidden sector benchmark model
- Trigger: a dedicated trigger called CalRatio-trigger: trackless jet + properties of the jet
- Reconstruction: classical jet-clustering + (BDT) to select displaced jets
- Background: cosmics+beam induced backgrounds (a broad timing distribution),
 multijets processes (data-driven method estimation)

