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BSM landscape:
BSM models and their parameters (example MSSM + 19 parameters)



Lets start with a provocative statement

Many many simplified models
are not equal to

a full model



A few steps back — What do we want to know
about BSM models ?

| like to know the probability of the model + parameter set given the
experimental data (or maybe simpler — if a model is excluded or not)
for a any (interesting) model on the arxiv and any possible set of
parameters

Is this possible ?
How ?



Why is this useful ?

* Current practice: Publish experimental model constraints on a 2-
dimensional piece of paper

Drawbacks:

- either a projection or a simplification of the full parameter space
- If simplification = see 1 slide.

- If projection = What if other projection needed ?

* | am convinced that Machine Learning is the way to store/encode our
BSM results in the 21th century.




Why use SUSY-AI/ BSM -Al ?

Fast statistical results based on earlier analyses

High accuracy by learning hard-to-see relations in data

Works also in submodels of the learned model (e.g. mMSUGRA)
Providing confidence levels on prediction

New way to publish and recast multivariate data
Creating plots not present in paper
Re-usability and persistence of analysis and results




How could this work ? An example

- Need to have data points to train on (ATLAS, CMS, recasting tools
which run MC simulations, e.g. checkmate)

- Train a Machine Learning regression/classification tool to interpolate
between the data points = generalize the result



SPOT and idarksurvey

Aim 1: Quick recast of plots /figures for pheno models (and other high-parameteric models)

Aim 2: Collect model preditions/evaluations or “training data for BSM-AI"

Demo on www.idarksurvey.com
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idark: intelligent (dark) model survey

SUSY-AI is a part of BSM-Al and BSM-AI Is a part
of the idark project

SPOT: Faruk Diblen, Jisk Attema, Rena Bakshi

BSM-AI: Sascha Caron Jong Soo Kim, Krzysztof Rolbiecki,

Roberto Ruiz de Austri, Bob Stienen, first result was SUSY-AI:
[1605.02797]



ATLAS analysis chain for each of the
300000 model points

T = O(hours)

Simulate Event Calculate
detector recon- Cross
response struction section

Simulate

Analyse
results

Model
point

events

Exclusion
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Machine Learning Applied

Training data: model points in

Model point

supersymmetric model with 1
only phenomenologically

relevant parameters (pMSSM)
source: ATLAS [1508.06608]

ap
Testing data: independent W
(unseen) data

7 ¥

Allowed
Is currently a classification

algorithm within scikit-learn (a
Random Forest)

For 13 TeV limits we use also:
Alan Barr and Jesse Liu,
[arXiv:1605.09502]

Excluded
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With Machine Learning we
use smart “generalization” to
go from discrete data to a continuous function

- We get information on the parameter
space and

- We can “learn” the exclusion boundary
(or even the likelihood or confidence level)
in the full parameter space of the MSSM19



Exclusion analysis

T = O(hours)
O = : Simulate Event Calculate
© .S Simulate Analyse
o © detector recon- Cross
S o events : ) results
response struction section
ol
o ©
S Q

Exclusion

Exclusion

T=<0(1 ms)
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All plots here by Bob Stienen !
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Here SUSY-Al is not perfect
but we have more information
than just excluded or not.

— SUSY-Al output variable
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Number of model points

Used training data to learn classification

It determines a confidence level of
its classification using the training data.

Ratio of majority class per bin

Data distribution (logarithmic)

Excluded

[ Allowed
[ Excluded

Prediction

Allowed
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Classifier output
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Confidence
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Probability that discrete classification is correct

0.6 |

0.5
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0.0
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Classifier output

0.8
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0.68CL (93.25% of all data)
0.9CL (80.09% of all data)
095CL (70 65% of all data)

0.98CL (59.34% of all data)
— 0.99CL (51.57% of all data)

— confidence
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SUSY-AI (Online)

. Tool has been published
https://susyai.hepforge.org
. Python interface to classifier
. Scikit-learn package for ML
implementation

. Online interface
http://susy-ai.orqg/
. All functionalities except
batch predictions
. Predictions in < 2 seconds

SUSY-AI Online

SUSY-AI VERSION 2.1.0

SUSY-Al is a machine

to provide in a

a second the exch

a pMSSM

point. This website
provides a simple online
interface for quick
determination of

Run-ll (13TeV). The papers
associated with this data
can be found

The full version of
SUSY-Al is faster and can
provide predicions for
multiple modelpoints at
th me time. It is under
continuing active
development and can be
downloaded from the

Direct parameter input

all paramet

Slide the parameters to the requested values or click 'set value' to set a variable manually. Prediction can only be performed if
rs have been set. More information about the parameters (what they are and where they can be found in .slha
files) can be found here,

The BSM-Al project: SUSY-Al - Generalizing LHC limits on Supersymmetry with

S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri and B. Stienen,

Machine Learning
ariv:16C 9

ML 2206 Gev M2 1517 Gev M3 3017 Gev mL1 2479 Gev
—

mLa 2854 Gev mE1 3518 Gev' mE3 3431 GV mQ1 2914 Gev

mQ3 2013 Gev mu1 2371Gev mu3 2702 Gev mD1 2464 Gev

— — — —

mD3 3304 Gev At 4133Gev Ab 1930 Gev Atau 3290 Gev
——

mu 2182 Gev MAS2  2.610e+7 Gev? tan(beta) 50

n 8.slha

Direct parameter input (15:06:50)

Analysis



https://susyai.hepforge.org/
http://susy-ai.org/

Steering the LHC analyses:
Where does SUSY-AI like to have more points ?

A) We like have more points where SUSY-Al is less certain
— Sample regions with low SUSY-Al “certainty”

B) We also want have points as “targets” in holes

- Sample islands with “non-excluded” with high
“Certainty”

Timeline: Provide a list of targets

make ATLAS-internal version of SUSY-AI using 13 TeV scans
Provide again a list of targets

- Until we have learned and excluded the low mass MSSM19 with >99 % accuracy



accuracy

How to improve ? Active Learning

0.92H - - : :
I Oversample regions with
000 [ low certainty
| =>» Then SUSY-AI gets better
L L and better and better...
O.BA L random samples
active learned
0.82 ] 1 ] 1
0 50000 100000 150000 200000 250000

Trainingsize
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BSM-AI

* Python package
* Framework allowing generalization to any model
stored as a ML algorithm constructed by
* scikit-learn
* keras + tensorflow

* Online library of trained algorithms
* Allows remote querying via server-client structure

only 1 instance needed for entire parallelized pipeline

* Currently finalizing documentation

looking for enthusiastic testers!




Predicted label

BSM-AI regression example... Learning GAMBIT likelihoods
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True label

https://arxiv.org/abs/1705.07917

Plot by Sydney Otten
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Join www.darkmachines.org

Dark Machines About  Events  Projects  Researchers  White paper  Mailinglist ~ Contribute Y

About Dark Machines

L Dark Machines is a research collective of physicists and data scientists. We are curious about o Seih e o B
e the universe and want to answer cutting edge questions about Dark Matter with the most 07 Lo e a '
advanced techniques that data science provides us with. s




Summary

- We propose to explore models in full parameter space
- Store solutions (at idarksurvey.com)
- Train Machine Learning on the model information
===> Prototype is SUSY-AI
===> generic catalogue to store all those ML files will be BSM-AI
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Model exclusion in Particle Physics

We are used to publish on a piece of paper...
i.e. in 2 dimensions.

What we usually do in ATLAS ?

a) Forget about the 6 dimensional model,
take a “simplified” model with only A and B
b) Set parameter C= ..., D= ..., E=... and plot A
vs B

c) More sophisticated: Show projections of
the model likelihood on parameters A, B as
well as C,D etc.

Publish many model evaluations:
Likelihood (A=12, B=3, C=4, D=5, E=8)
Likelihood (A=5, B=9, C=6, D=2, E=3)

Parameter A

Parameter C = ...
Parameter D = ...
Parameter E = ...

Parameter B

<>



