THE FATE OF THE LITTLEST HIGGS MODEL WITH T-PARITY UNDER 13 TEV LHC DATA Daniel Dercks, né Schmeier

in coll. with G. Moortgat-Pick, J. Reuter and S.Y. Shim J. High Energ. Phys. (2018) 2018 49 [1801.06499]

(Re)interpreting the results of new physics searches at the LHC CERN, 15 May 2018

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Contents

Global Symmetry SU(5) breaks to SO(5) at scale f $VEV: \langle \Sigma \rangle = \Sigma_0$ 1) Motivation and Constructon of the SU(5) contains gauged SU(2), x U(1), SU(5) contains gauged SU(2), x U(1) NCR · $e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f}$ $Q_1^a = \frac{1}{2} \begin{pmatrix} \overline{\sigma} & \overline{\sigma} \\ \overline{\sigma} & \overline{\sigma} \\ \overline{\sigma} & \overline{\sigma} \\ \overline{\sigma} & \overline{\sigma} \\ \overline{\sigma} & \overline{\sigma} \end{pmatrix}$ $Y_1 = \frac{1}{10} \operatorname{diag}(-3, -3, 2, 2, 2)$ $Y_2 = \frac{1}{10} \operatorname{diag} (-2, -2, -2, 3, 3)$ Littlest Higgs Model with T-Parity $\mathcal{L}_{kin} = \frac{f^2}{4} \text{Tr} |D_{\mu}\Sigma|^2$ $D_{\mu}\Sigma = \partial_{\mu}\Sigma - i \sum [g_jW_j^a(Q_j^a\Sigma + \Sigma Q_j^{a^T}) + g'_jB_j(Y_j\Sigma + \Sigma Y_j)]$ Gauge groups collectively Light Gauge Bos to diagonal s SU(2), x U(1), Heavy Cauge Bosons $m_{W_L}, m_{Z_L} \propto v$ $m_{W_{H}}, m_{Z_{H}}, m_{A_{H}} \propto f$ Breaks to U(1) $m_{A_L} = 0$ scale v $m_{t_{+}} f \sqrt{1 + R}$ $m_{u_H} = \sqrt{2} \kappa_q f \left(1 - \frac{1}{8} \frac{v^2}{f^2}\right),$ $m_{W_{ii}} = m_{Z_{ii}} = qf$ $m_{d_H} = \sqrt{2} \kappa_o f$ $-\frac{m_{t_+}}{f(1+R^2)}$ $m_{A_H} = \frac{g'f}{\sqrt{\epsilon}}$ $m_{\ell_H} = \sqrt{2} \kappa_l f$ $m_{T-}\sqrt{1+R^2}$ 2) Expected LHC Cross Section and Decay Topologies Solid: k=1 Solid: f=1 Te Dashed: k=2 Dashed: f=2 Te $\vec{E}_T + 2.3 \ell$ $\vec{E}_T + 1 \ell + (b) \cdot j$ $\vec{E}_{-1} + 0 \ell + 2.6 j$ 3) Recasted LHC Results XIII Heavy Vector Bound dominated Heavy Fermion Boson dominated by SUSY multijet dominated $m_{V_H} \gtrsim 600 \text{ GeV}$ $m_{q_H}\gtrsim 2~{
m TeV}$ search Individual results highly dependent on details in heavy fermion/heavy top 4) Combined Exclusion with sector! LHC: $f \gtrsim 950 \text{ GeV}$ EWPO: $f \gtrsim 750 \text{ GeV}$ EWPO + Higgs Data & Conclusion omb. $f \gtrsim 1.300 \text{ GeV}$ rgely independent of kappa and ine-Tuning pushed to sub-percent level!

May 15, 2018

THE HIERARCHY PROBLEM

How can the Higgs mass be naturally light?

THE HIERARCHY PROBLEM

How can the Higgs mass be naturally light?

Little Higgs: Make Higgs a Pseudo-Nambu-Goldstone Boson and protect its mass from loop corrections via "Collective Symmetry Breaking" of 2 groups!

Arkani-Hamed, Cohen, Katz, Nelson, '02

Global Symmetry SU(5) breaks to SO(5) at scale f

$$\begin{split} \mathsf{VEV} : \langle \Sigma \rangle &= \Sigma_0 = \begin{pmatrix} & \mathbf{1}_{2 \times 2} \\ & \mathbf{1} \\ \mathbf{1}_{2 \times 2} \end{pmatrix} \\ \mathsf{NGB} : \ \Sigma &= \ e^{i \Pi / f} \ \Sigma_0 \ e^{i \Pi^T / f} \\ \Pi &= \frac{1}{\sqrt{2}} \begin{pmatrix} \begin{bmatrix} & h^\dagger \\ & h^\dagger \end{bmatrix} \\ & h^\dagger \end{bmatrix} + \dots \end{split}$$

Arkani-Hamed, Cohen, Katz, Nelson, '02

Arkani-Hamed, Cohen, Katz, Nelson, '02

Higgs mass corrections suppressed due to the simultaneous breaking of two gauge groups

Arkani-Hamed, Cohen, Katz, Nelson, '02

LITTLEST HIGGS PROBLEMS

Hewett/Petriello/Rizzo, '02; Csáki/Hubisz/Kribs/Meade/Terning, '03; Kilian/Reuter, '03,...

Reuter, Tonini, 1212.5930

Tree level mixing between heavy and light gauge bosons yields large contributions to electroweak precision observables

$$f > 4.7 \text{ TeV}@95 \% \text{C.L.}$$

Fine Tuning of <0.1% would again introduce the hierarchy problem

LITTLEST HIGGS + T-PARITY REALISATION

Cheng, Low, '03

LITTLEST HIGGS + T-PARITY REALISATION

Cheng, Low, '03

LITTLEST HIGGS + T-PARITY REALISATION

Cheng, Low, '03

two gauge groups

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd

$$m_{W_H} = m_{Z_H} = gf,$$

 $m_{A_H} = \frac{g'f}{\sqrt{5}}$

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd
- Embed Standard Model Fermions in SU(5) multiplets
- Add additional T-odd fermion multiplets (and "mirror" partners to create mass terms)
 - → These mix to T-even Standard Model fermions + heavy T-odd partners + "decoupled rest"

$$m_{W_H} = m_{Z_H} = gf, \qquad \qquad m_{u_H} = \sqrt{2} \kappa_q f \left(1 - \frac{1}{8} \frac{v^2}{f^2}\right), \\ m_{A_H} = \frac{g'f}{\sqrt{5}} \qquad \qquad m_{d_H} = \sqrt{2} \kappa_q f \\ m_{\ell_H} = \sqrt{2} \kappa_l f$$

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd
- Embed Standard Model Fermions in SU(5) multiplets
- Add additional T-odd fermion multiplets (and "mirror" partners to create mass terms)
 - → These mix to T-even Standard Model fermions + heavy T-odd partners + "decoupled rest"
- "Collectively" add two vector-like top partners to cancel quadratic divergence from top-loops
 - \rightarrow Mix to a T-even and a T-odd top partner

$$m_{W_{H}} = m_{Z_{H}} = gf, \qquad m_{u_{H}} = \sqrt{2} \kappa_{q} f \left(1 - \frac{1}{8} \frac{v^{2}}{f^{2}}\right), \qquad m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R} m_{A_{H}} = \frac{g' f}{\sqrt{5}} \qquad m_{d_{H}} = \sqrt{2} \kappa_{q} f \qquad m_{T^{+}} = \frac{m_{t_{+}}}{v} \frac{f (1 + R^{2})}{R} m_{\ell_{H}} = \sqrt{2} \kappa_{l} f \qquad m_{T^{+}} = m_{T^{-}} \sqrt{1 + R^{2}}$$

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd
- Embed Standard Model Fermions in SU(5) multiplets
- Add additional T-odd fermion multiplets (and "mirror" partners to create mass terms)
 - → These mix to T-even Standard Model fermions + heavy T-odd partners + "decoupled rest"
- "Collectively" add two vector-like top partners to cancel quadratic divergence from top-loops
 - \rightarrow Mix to a T-even and a T-odd top partner
- 4 free parameters: $f, \kappa_q, \kappa_\ell, R$

$$m_{W_{H}} = m_{Z_{H}} = gf, \qquad m_{u_{H}} = \sqrt{2} \kappa_{q} f \left(1 - \frac{1}{8} \frac{v^{2}}{f^{2}}\right), \qquad m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R} m_{A_{H}} = \frac{g' f}{\sqrt{5}} \qquad m_{d_{H}} = \sqrt{2} \kappa_{q} f \qquad m_{T^{+}} = \frac{m_{t_{+}}}{v} \frac{f (1 + R^{2})}{R} = m_{T^{-}} \sqrt{1 + R^{2}}$$

LITTLE HIGGS + T-PARITY CONSTRAINTS

Hewett/Petriello/Rizzo, '02; Csáki/Hubisz/Kribs/Meade/Terning, '03; Kilian/Reuter, '03,...

Mixing is removed and EWPO contributions only appear at loop level

Heavy tops cancel contributions for R close to 1.

 $R = 1: f \gtrsim 400 \text{ GeV}@95 \% \text{C.L.}$ $m_{W_H} \gtrsim 270 \text{ GeV}$ $m_T \gtrsim 550 \text{ GeV}$

Model realisations with small fine tuning still possible!

Reuter, Tonini, 1212.5930

LITTLE HIGGS + T-PARITY CONSTRAINTS

Hewett/Petriello/Rizzo, '02; Csáki/Hubisz/Kribs/Meade/Terning, '03; Kilian/Reuter, '03,...

Higgs constraints originate from deviations in production cross sections and branching ratios

 $R = 1: f \gtrsim 700 \text{ GeV}@95 \% \text{C.L.}$ $m_{W_H} \gtrsim 470 \text{ GeV}$ $m_T \gtrsim 950 \text{ GeV}$

Reuter, Tonini, 1212.5930

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd
- Embed Standard Model Fermions in SU(5) multiplets
- Add additional T-odd fermion multiplets (and "mirror" partners to create mass terms)
 - → These mix to T-even Standard Model fermions + heavy T-odd partners + "decoupled rest"
- "Collectively" add two vector-like top partners to cancel quadratic divergence from top-loops
 - \rightarrow Mix to a T-even and a T-odd top partner
- 4 free parameters: $f, \kappa_q, \kappa_\ell, R$

$$m_{W_{H}} = m_{Z_{H}} = gf, \qquad m_{u_{H}} = \sqrt{2} \kappa_{q} f \left(1 - \frac{1}{8} \frac{v^{2}}{f^{2}}\right), \qquad m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R} m_{A_{H}} = \frac{g' f}{\sqrt{5}} \qquad m_{d_{H}} = \sqrt{2} \kappa_{q} f \qquad m_{T^{+}} = \frac{m_{t_{+}}}{v} \frac{f(1 + R^{2})}{R} m_{\ell_{H}} = \sqrt{2} \kappa_{l} f \qquad m_{T^{+}} = m_{T^{-}} \sqrt{1 + R^{2}}$$

- Production of T-parity odd particles only in pairs
- T-parity conservation renders lightest T-odd particle stable
 - → Possible Dark Matter candidate, unless T-parity is violated

- Standard Model particles are all T-parity even
- Heavy gauge bosons automatically T-parity odd
- Embed Standard Model Fermions in SU(5) multiplets
- Add additional T-odd fermion multiplets (and "mirror" partners to create mass terms)
 - → These mix to T-even Standard Model fermions + heavy T-odd partners + "decoupled rest"
- "Collectively" add two vector-like top partners to cancel quadratic divergence from top-loops
 - \rightarrow Mix to a T-even and a T-odd top partner
- 4 free parameters: $f, \kappa_q, \kappa_\ell, R$

$$m_{W_{H}} = m_{Z_{H}} = gf,$$

$$m_{U_{H}} = \sqrt{2} \kappa_{q} f \left(1 - \frac{1}{8} \frac{v^{2}}{f^{2}}\right),$$

$$m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R}$$

$$m_{d_{H}} = \sqrt{2} \kappa_{q} f$$

$$m_{d_{H}} = \sqrt{2} \kappa_{l} f$$

$$m_{\ell_{H}} = \sqrt{2} \kappa_{l} f$$

$$m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R}$$

$$m_{T^{+}} = \frac{m_{t_{+}}}{v} \frac{f (1 + R^{2})}{R}$$

$$m_{\ell_{H}} = \sqrt{2} \kappa_{l} f$$

- Production of T-parity odd particles only in pairs
- T-parity conservation renders lightest T-odd particle stable
 - → Possible Dark Matter candidate, unless T-parity is violated

T-PARITY VIOLATION

Hill, Hill, '07 Freitas/Schwaller/Wyler, '08

• Wess-Zumino-Witten-anomalies in the UV sector may create A_HVV couplings

$$\Gamma(A_H \to W^+ W^-) = 2\Gamma(A_H \to ZZ) = \left(\frac{Ng'}{80\sqrt{3}\pi^3}\right)^2 \frac{M_{A_H}^3 m_V^2}{f^4} \left(1 - \frac{4m_V^2}{M_{A_H}^2}\right)^{\frac{5}{2}},$$

• For masses below 160 GeV, loop decays into fermions may become relevant

$$\Gamma(A_H \to ff) = \left(\frac{N_{C,f}M_{A_H}}{48\pi}\right) \left[c_-^2 \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right) + c_+^2 \left(1 + \frac{2m_f^2}{M_{A_H}^2}\right)\right] \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right)^{\frac{1}{2}}$$

T-PARITY VIOLATION

Hill, Hill, '07 Freitas/Schwaller/Wyler, '08

• Wess-Zumino-Witten-anomalies in the UV sector may create A_HVV couplings

$$\Gamma(A_H \to W^+ W^-) = 2\Gamma(A_H \to ZZ) = \left(\frac{Ng'}{80\sqrt{3}\pi^3}\right)^2 \frac{M_{A_H}^3 m_V^2}{f^4} \left(1 - \frac{4m_V^2}{M_{A_H}^2}\right)^{\frac{3}{2}}$$

• For masses below 160 GeV, loop decays into fermions may become relevant

$$\Gamma(A_H \to ff) = \left(\frac{N_{C,f}M_{A_H}}{48\pi}\right) \left[c_-^2 \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right) + c_+^2 \left(1 + \frac{2m_f^2}{M_{A_H}^2}\right)\right] \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right)^{\frac{1}{2}}$$

T-PARITY VIOLATION

Hill, Hill, '07 Freitas/Schwaller/Wyler, '08

• Wess-Zumino-Witten-anomalies in the UV sector may create A_HVV couplings

$$\Gamma(A_H \to W^+ W^-) = 2\Gamma(A_H \to ZZ) = \left(\frac{Ng'}{80\sqrt{3}\pi^3}\right)^2 \frac{M_{A_H}^3 m_V^2}{f^4} \left(1 - \frac{4m_V^2}{M_{A_H}^2}\right)^{\frac{3}{2}}$$

• For masses below 160 GeV, loop decays into fermions may become relevant

$$\Gamma(A_H \to ff) = \left(\frac{N_{C,f}M_{A_H}}{48\pi}\right) \left[c_-^2 \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right) + c_+^2 \left(1 + \frac{2m_f^2}{M_{A_H}^2}\right)\right] \left(1 - \frac{4m_f^2}{M_{A_H}^2}\right)^{\frac{1}{2}}$$

LHT SCENARIOS

- 4 free parameters: $f, \kappa_q, \kappa_\ell, R$
- T-Parity may be conserved or broken

$$m_{W_{H}} = m_{Z_{H}} = gf, \qquad m_{u_{H}} = \sqrt{2} \kappa_{q} f \left(1 - \frac{1}{8} \frac{v^{2}}{f^{2}}\right), \qquad m_{T^{-}} = \frac{m_{t_{+}}}{v} \frac{f \sqrt{1 + R^{2}}}{R} m_{d_{H}} = \sqrt{2} \kappa_{q} f \qquad m_{d_{H}} = \sqrt{2} \kappa_{q} f \qquad m_{T^{+}} = \frac{m_{t_{+}}}{v} \frac{f(1 + R^{2})}{R} m_{\ell_{H}} = \sqrt{2} \kappa_{l} f \qquad m_{T^{+}} = m_{T^{-}} \sqrt{1 + R^{2}}$$

$ \begin{array}{cccc} Fermion \ Universality & \kappa_l = \kappa_q \\ f_H & Heavy \ q_H \\ Light \ \ell_H \end{array} & \kappa_q = 3.0 \\ \kappa_q = 3.0 \\ T^{\pm} & Light \ T^{\pm} \\ Heavy \ T^{\pm} \end{array} & R = 1.0 \\ Heavy \ T^{\pm} \\ R = 0.2 \end{array} & \begin{array}{c} \bullet \text{mass degeneracy of } q_H, \ \ell_H \\ \bullet \ \ell_H \text{ production negligible} \\ \bullet \ \ell_H \text{ production relevant} \\ \bullet \ \ell_H \text{ production relevant} \\ \bullet \ \ell_H \text{ very light} \\ \bullet \ V_H \text{ branching ratios change} \\ T^{\pm} & Light \ T^{\pm} \\ Heavy \ T^{\pm} \\ R = 0.2 \\ \bullet \ T^{\pm} \text{ are light/accessible} \\ A_H & TPC \\ TPV \\ \end{array} & \text{No TPV} \\ \bullet \ A_H \text{ is stable and invisible} \\ \end{array} $	Sector	Model	Constraint	Phenomenology
$ \begin{array}{ccc} f_{H} & Heavy \ q_{H} & \kappa_{q} = 3.0 & \begin{array}{c} \bullet \ q_{H} \ \text{decoupled} \\ \bullet \ \ell_{H} \ \text{production relevant} \\ \\ \bullet \ \ell_{H} \ \text{production relevant} \\ \end{array} \\ \hline \\ Iight \ \ell_{H} & \kappa_{l} = 0.2 & \begin{array}{c} \bullet \ \ell_{H} \ \text{very light} \\ \bullet \ V_{H} \ \text{branching ratios change} \\ \\ \hline \\ T^{\pm} & \begin{array}{c} Light \ T^{\pm} & R = 1.0 \\ Heavy \ T^{\pm} & R = 0.2 \end{array} \\ \hline \\ \hline \\ A_{H} & \begin{array}{c} TPC & \text{No TPV} \\ TPV & \text{With TPV} \end{array} \\ \hline \\ \hline \\ A_{H} & is \ \text{unstable} \end{array} \end{array} $	f_H	Fermion Universality	$\kappa_l = \kappa_q$	• mass degeneracy of q_H, ℓ_H • ℓ_H production negligible
Light ℓ_H $\kappa_l = 0.2$ • ℓ_H very light • V_H branching ratios change T^{\pm} Light T^{\pm} $R = 1.0$ • T^{\pm} are light/accessibleHeavy T^{\pm} $R = 0.2$ • T^{\pm} are heavy/inaccessible A_H TPC TPVNo TPV• A_H is stable and invisible		$Heavy q_H$	$\kappa_q = 3.0$	• q_H decoupled • ℓ_H production relevant
T^{\pm} Light T^{\pm} $R = 1.0$ T^{\pm} are light/accessible $Heavy T^{\pm}$ $R = 0.2$ T^{\pm} are heavy/inaccessible A_H TPC No TPV A_H is stable and invisible TPV With TPV A_H is unstable		$Light \ \ell_H$	$\kappa_l = 0.2$	 \(\ell_H\) very light \(V_H\) branching ratios change
IHeavy T^{\pm} $R = 0.2$ T^{\pm} are heavy/inaccessible A_H TPC No TPV A_H is stable and invisible TPV With TPV A_H is unstable	T^{\pm}	$Light \ T^{\pm}$	R = 1.0	• T^{\pm} are light/accessible
A_H TPC No TPV• A_H is stable and invisible TPV With TPV• A_H is unstable		$Heavy \ T^{\pm}$	R = 0.2	• T^{\pm} are heavy/inaccessible
TPV With TPV • A_H is unstable	A_H	TPC	No TPV	• A_H is stable and invisible
		TPV	With TPV	• A_H is unstable

EXPECTED LHC TOPOLOGIES

 $pp \to V_H V_H (\in W_H, Z_H, A_H)$ $W_H / Z_H \to \ell \ell_H \to \ell \ell A_H \text{ or}$ $W_H \to W A_H,$ $Z_H \to Z / h A_H$

 $pp \to q_H q_H,$ $q_H \to q A_H \text{ or}$ $q_H \to q W_H / Z_H \to q A_H + X$

 $pp \to q_H V_H,$ $q_H \text{ and } V_H \text{ decaying as above}$ $pp \to \ell_H \ell_H$ $\ell_H \to \ell A_H$ $pp \to T^{\pm} T^{\pm}$ $T^{\pm} \to t A_H$

EXPECTED LHC TOPOLOGIES

$pp \to V_H V_H (\in W_H, Z_H, A_H)$	$pp \to \tilde{\chi}\tilde{\chi} \ (\in \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0),$	
$W_H/Z_H \to \ell \ell_H \to \ell \ell A_H$ or	$\tilde{\chi}^{\pm}/\tilde{\chi}^0_2 \to \ell \tilde{\ell} \to \ell \ell \chi^0 \text{ or}$	
$W_H \to W A_H,$	$\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0,$	
$Z_H \to Z/hA_H$	${ ilde \chi}_2^0 o Z/h { ilde \chi}_1^0$	
$pp \to q_H q_H,$	$pp \to \tilde{q}\tilde{q},$	
$q_H \to q A_H$ or	$\tilde{q} \to q \tilde{\chi}_1^0$ or	Recasting SUSY
$q_H \to qW_H/Z_H \to qA_H + X$	$\tilde{q} \to q \tilde{\chi}_2^0 / \chi_1^{\pm} \to q \tilde{\chi}_1^0 + X$	analyses is
$pp \to q_H V_H,$	$pp \to \tilde{q}\tilde{\chi},$	expected to be very
q_H and V_H decaying as above	\tilde{q} and $\tilde{\chi}$ decaying as above	powerful here
$pp \to \ell_H \ell_H$	$pp \to \tilde{\ell}\tilde{\ell},$	
$\ell_H \to \ell A_H$	$ ilde{\ell} ightarrow \ell ilde{\chi}_1^0$	
$pp \to T^{\pm}T^{\pm}$	$pp \rightarrow \overline{\tilde{t}\tilde{t}}$	
$T^{\pm} \to t A_H$	$ ilde{t} ightarrow t ilde{\chi}_0$	

EXPECTED LHC TOPOLOGIES

$pp \to V_H V_H (\in W_H, Z_H, A_H)$	$pp \to \tilde{\chi} \tilde{\chi} \ (\in$	$(\tilde{\chi}_1^\pm, ilde{\chi}_2^0, ilde{\chi}_1^0),$
$W_H/Z_H \to \ell \ell_H \to \ell \ell A_H$ or	$\tilde{\chi}^{\pm}/\tilde{\chi}^0_2 \rightarrow$	$\tilde{\ell} \to \ell \ell \chi^0 { m or}$
$W_H \to W A_H,$	$\tilde{\chi}_1^{\pm} \to W^{\pm}$	$\tilde{\zeta}_1^0$
$Z_H \to Z/hA_H$	${\tilde \chi}_2^0 \to Z/h$	
$pp \to q_H q_H,$	$pp \rightarrow \tilde{q}\tilde{q},$	
$q_H \to q A_H$ or	$ ilde q o q ilde \chi_1^0$ o	Recasting SUSY
$q_H \to qW_H/Z_H \to qA_H + X$	$\tilde{q} ightarrow q \tilde{\chi}_2^0 / \gamma$	$\hat{\mu}^{\pm} \rightarrow q \tilde{\chi}_1^0 + X$ analyses is
$pp \to q_H V_H,$	$pp \to \tilde{q}\tilde{\chi},$	expected to be very
q_H and V_H decaying as above	$ ilde{q}$ and $ ilde{\chi}$ de	caying as above powerful here
$pp \to \ell_H \ell_H$	$pp \to \tilde{\ell}\tilde{\ell},$	
$\ell_H o \ell A_H$	$\tilde{\ell} ightarrow \ell \tilde{\chi}_1^0$	
$pp \to T^{\pm}T^{\pm}$	$pp \to \tilde{t}\tilde{t}$	
$T^{\pm} \to t A_H$	$\tilde{t} \to t \tilde{\chi}_0$	
	т_	Parity violation still covored by SUSV
$A_H A_H \to V_{\rm lep} V V V (TPV)$, , , , , , , , , , , , , , , , , , , ,	and y violation still covered by SUSI
$V_{\rm lep} \rightarrow { m MET}$ (> 70% of al	1 events)	naryses due to reptonic gauge boson
		decays

NUMERICAL ANALYSIS

Use UFO implementation in MG5, validated with Whizard

Test the following						
processes against all						
implemented 8, 13 and high						
lumi	lumi 14 TeV results					
(only	13 TeV results discussed					
horo)						
ner e)						
1.	$pp \to q_H q_H, q_H \bar{q}_H, \bar{q}_H \bar{q}_H$					
2.	$pp \to q_H V_H$					
3.	$pp \to \ell_H \bar{\ell}_H$					
4.	$pp \to V_H V_H$					
5.	$pp \to T^+ \bar{T}^+, T^- \bar{T}^-$					
6.	$pp \to T_+ \bar{q}, \bar{T}_+ q, T_+ W^\pm, \bar{T}_+ W^\pm$					

Fermion Universality x Heavy T x T-Parity Conserved

CM identifier	Final State	Designed for	Ref.
atlas_conf_2016_096	$ onumber E_T + 2-3 \ \ell$	$ ilde{\chi}^{\pm}, ilde{\chi}^{0}, ilde{\ell}$	[55]
atlas_conf_2016_054	${I\!\!\!E}_T+1\ell+ m(b)$ -j	ilde q, ilde g	[76]
atlas_conf_2017_022	$ ot\!\!\!/ E_T + 0\ell+2$ -6 j	$\widetilde{q},\widetilde{g}$	[78]
atlas_conf_2017_039	${ I\!\!\! E}_T + 23 \; \ell$	$ ilde{\chi}^{\pm}, ilde{\chi}^{0}, ilde{\ell}$	[56]

Fermion Universality x Heavy T x T-Parity Conserved

Fermion Universality x Heavy T x T-Parity Conserved

May 15, 2018

Fermion Universality x Heavy T x T-Parity Conserved

May 15, 2018

Fermion Universality x Light T x T-Parity Conserved

Heavy q_{μ} x Light T x T-Parity Conserved

Light 1, x Light T x T-Parity Conserved

Fermion Universality x Heavy T x T-Parity Violated

COMBINE WITH EWPO + HIGGS

Here: R-vs-f favours R=1 to achieve cancellation effects of heavy top and SM top sector

Kappa-dependence not shown

Interestingly, heavy fermions contributions (box diagrams) do not decouple at high mass values!

$$\Delta T_{q_H,\ell_H} = -\sum_{q_H,l_H} \frac{\kappa_{q,\ell}^2}{192\pi^2 \alpha_w} \frac{v^2}{f^2}$$
$$= -\sum_{q_H,l_H} \frac{m_{q_H,\ell_H}^2}{192\pi^2 \alpha_w} \frac{v^2}{f^4}$$

Strong complementarity to LHC expected!

COMBINED RESULTS

Daniel Dercks - Littlest Higgs Model @ LHC13

47/47

COMBINED RESULTS

COMBINED RESULTS

CONCLUSIONS

- Little Higgs theories provide interesting solution to hierarchy problem and predict global symmetry broken at scale f.
- Littlest Higgs + T-Parity weakly constrained by EWPO + Higgs constraints
- Collider phenomenology shares many similarities with Supersymmetry
- Bounds on parameters strongly dependent on details of heavy fermion and heavy top sector but complementary to EWPO + Higgs
- Combination yields "model-independent" bound of f > 1.3 TeV and requires sub-percent fine-tuning, hence weakening the motivation for the Littlest Higgs as a solution to the hierarchy problem

LHC RUN2 PRODUCTION CROSS SECTIONS

LHC RUN2 PRODUCTION CROSS SECTIONS

