Long-Lived Neutrinos in the Left-Right Symmetric Model

Goran Popara (with F. Nesti and M. Nemevšek) based on arXiv:1801.05813

Rudjer Bošković Institute

May 16, 2018
Talk Outline

- Left-Right Model
- Keung-Senjanović (KS) Process
- Monte Carlo for KS
- Results
- Conclusion
Left-Right Model

J. C. Pati, A. Salam, PRD 10 (1974); 11 (1975); R. N. Mohapatra, PRD 11 (1975)
G. Senjanović, R. N. Mohapatra, PRD 12 (1975); G. Senjanović, PRL 44 (1980) ...

Gauge group:

\[\mathcal{G}_{LR} = SU(2)_L \times SU(2)_R \times U(1)_{B-L} \]

\[\Rightarrow W_{L,R} \quad Z_{L,R} \quad \gamma \]

Matter fields:

\[Q_{L,i} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}_i \sim \begin{pmatrix} 2 \\ 1 \\ \frac{1}{3} \end{pmatrix} \quad Q_{R,i} = \begin{pmatrix} u_R \\ d_R \end{pmatrix}_i \sim \begin{pmatrix} 1 \\ 2 \\ \frac{1}{3} \end{pmatrix} \]

\[\psi_{L,i} = \begin{pmatrix} \nu_L \\ l_L \end{pmatrix}_i \sim \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \quad \psi_{R,i} = \begin{pmatrix} N_R \\ l_R \end{pmatrix}_i \sim \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \]
Left-Right Model

Scalar sector:

\[\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (2, 2, 0) \]

\[\Delta_{L,R} = \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ / \sqrt{2} \end{pmatrix} \sim (3, 1, 2) , (1, 3, 2) \]

Symmetry breaking pattern:

\[G_{LR} \xrightarrow{\langle \Delta_R \rangle \neq 0 \langle \Delta_L \rangle = 0} SU(2)_L \times U(1) \xrightarrow{\langle \Phi \rangle \neq 0} U(1)_{em} \]

\[Q_{em} = I_{3L} + I_{3R} + \frac{B - L}{2} \]
Left-Right Model

In the LR model, there is no ambiguity of M_D.

$$M_D = \sqrt{\frac{v_L}{v_R} - \frac{1}{M_N} M_\nu}$$

⇒ Connection between low energy (M_ν) and high energy (M_N) phenomena.

Crucial ingredient — *Majorana nature of neutrinos.*
⇒ Lepton Number Violation
Left-Right Model: Constraints

Constraints from low-energy experiments:

- \(K^0 - \bar{K}^0 \) and \(B^0_{d,s} - \bar{B}^0_{d,s} \) oscillations

- CP-violating processes (\(\varepsilon, \varepsilon' \))

- \(nEDM \)

Also: KS search from CMS and ATLAS, \(W_R \to jj \)

\[\Rightarrow M_{W_R} \gtrsim 3.7 \text{ TeV} \]
Keung-Senjanović Process

Important features of Keung-Senjanović (KS) process:

- lepton number violation (not present in SM),

- displaced vertices: \(\Gamma \sim \left(\frac{M_W}{M_R} \right)^4 m_N^5 \Rightarrow \) possibly long-lived \(N \)

- high-energy analogue to \(0\nu2\beta \).
Final states ranging from:

- **standard KS region**: $m_N \gtrsim 150 - 200$ GeV, invariant masses m_{lljj}^{inv} and m_{ljj}^{inv} can reconstruct m_N and M_R;

- **merged region**: small mass of N makes it difficult to reconstruct m_N using j_N invariant mass, M_R can be identified from m_{ljj}^{inv};

- **displaced region**: merged neutrino jet appears at a visibly displaced distance from the primary vertex;

- **invisible region**: jet appears outside the detector and manifests itself as a missing energy.
Simulation of signal and background involves several steps:

1. model definition (FeynRules),
2. event generation (MadGraph),
3. hadronization (Pythia),
4. detector simulation (Delphes),
5. analysis, cuts (MadAnalysis).

Narrow N resonance causes numerical instabilities in the event generation step!
Low N masses (≤ 10 GeV for $M_R \gtrsim 3$ TeV) are problematic for
MadGraph (understandable for a general purpose event generator).

Robust event generator for the whole parameter space was needed.

Well known solutions exist. Procedure:

1. decompose the phase space into two-body ones,
2. choose the appropriate integration variables/phase space mappings,
3. sample the integration variables according to the suitable
distributions,
4. evaluate the amplitudes.
General/adaptive integrators may not be able to probe the narrow Breit-Wigner peaks (if not eliminated beforehand).

Sample the problematic variables according to Breit-Wigner distribution.

In case of multiple peaks, use a basis of functions\(^1\)

\[
f = \sum_i f_i \quad f_i = \frac{|\mathcal{M}_i|^2}{\sum_j |\mathcal{M}_j|^2} |\mathcal{M}_{\text{tot}}|^2 \quad \mathcal{M}_{\text{tot}} = \sum_i \mathcal{M}_i
\]

In general, each \(f_i\) has a different peaking structure.

\(^1\)F. Maltoni, T. Stelzer, JHEP 0302 (2003) 027
Possible numerical difficulties in propagators (cancellation of p^2 and $m^2 \sim m^2\Gamma^2$):

$$\frac{1}{(p^2 - m^2)^2 + m^2\Gamma^2}$$

Solution: Use p^2 as the integration variable (change the integration variables in the phase space).

Minor technical complication: Use p^2 for evaluation of the chosen diagram (basis function f_i), calculate from external momenta in others.
Using these techniques, we developed a custom event generator for KS process (KSEG).

KSEG does the following:

- calculates the W_R and N widths,
- calculates the cross section for a given set of processes,
- produces unweighted events and outputs them to an LHE file.

Model file, event generator and modified DELPHES and MadAnalysis sources can be found on the web:

https://sites.google.com/site/leftrighthep
Jet Displacement

Simple DELPHES module: minimum displacement among the tracks associated with the jet which have $p_T > 20$ GeV.

Delphes visualization:
Sensitivity Assessment

Choice of measure: $S/\sqrt{S + B}$

Different *multivariate* approaches:
Cuts, Neural Networks, Decision Trees, Binning (new), …

Sensitivity measure for binning approach:

$$\sqrt{\sum_{i \in \text{bins}} \frac{s_i^2}{s_i + b_i}}$$

Variables used:
1. prompt lepton p_T
2. jet displacement d_T
3. number of leptons
4. number of jets
5. number of same-sign leptons
6. invariant mass of W_R products
Master Plot

- Standard KS (eejj) exclusion, 2σ CL (CMS)
- Dijet exclusion (ATLAS)
- $m_N > M_{W_R}$
- Standard + displaced KS (eejj + ej) reach ($L = 300/\text{fb}$)
- σ (CL)
- ν (CL)
- β (CL)
- $d(t) [\text{mm}]$
We developed a dedicated event generator for the KS process, modified some of the existing tools to fit our needs, and used some simple tools of our own (binning, neural nets), showed that jet displacement is a good discrimination variable for the low N mass, analyzed the invisible region by recasting the current search for W' in the $l\not{E}_T$ signature.

\Rightarrow KS process can reach a sensitivity up to 7–8 TeV for RH neutrino masses down to ~ 20 GeV.
Discrete LR Symmetries

Two kinds of LR symmetries, imposing restrictions on Yukawa matrices:

\[\mathcal{P} : \begin{cases} Q_L \leftrightarrow Q_R \\ \Phi \rightarrow \Phi^\dagger \end{cases} \Rightarrow Y = Y^\dagger, \quad \mathcal{C} : \begin{cases} Q_L \leftrightarrow (Q_R)^c \\ \Phi \rightarrow \Phi^T \end{cases} \Rightarrow Y = Y^T. \]

\(\mathcal{C}\) has an advantage — it can be gauged (involves spinors with same final chirality).

Also,

\[M_L = \frac{v_L}{v_R} M_N, \]
\[M_R = M_D^T. \]
Casas-Ibarra Ambiguity

But, Dirac couplings for neutrinos is not unambiguously defined.

\[M_D = i\sqrt{m_N}O\sqrt{m_\nu}V_L^\dagger \]

- \(m_\nu \) – light neutrino mass,
- \(m_N \) – heavy neutrino mass,
- \(O \) – arbitrary orthogonal complex matrix,
- \(V_L \) – light neutrino mixing matrix.

⇒ Not predictive by itself!

Possible extension of SM is the Left-Right symmetric model (LRSM):

- restores parity,
- naturally embeds the seesaw mechanism.
Multichannel MC

Solution is the multichannel Monte Carlo, where

\[g(\vec{x}) = \sum_{i=1}^{n} \alpha_i g_i(\vec{x}), \quad \int d\vec{x} g_i(\vec{x}) = 1, \quad \sum_{i=1}^{n} \alpha_i = 1. \]

\(g_i(\vec{x}) \) – one peaking structure,
\(\alpha_i \) – weight (probability) for a channel.

Weights can be optimized during the integration.

\[\alpha_{i}^{\text{new}} \propto \alpha_i \sqrt{W_i(\alpha)} \quad W_i(\alpha) = \left\langle \frac{g_i(\vec{x})}{g(\vec{x})} w(\vec{x})^2 \right\rangle \]
MadGraph vs KSEG

Transverse momentum and energy distributions (KSEG & MG5) of the prompt muon for $m_N = 80$ GeV and $M_R = 4$ TeV (upper panel) and $M_R = 6$ TeV (lower panel):
Invariant mass of the muons and jets for $m_N = 80$ GeV and $M_R = 4$ TeV (left) and $M_R = 6$ TeV (right):
Isolation

Percentage of secondary leptons passing the isolation requirements:

\[W_R \to eN \to e\bar{e}jj \]

\[W_R \to \mu N \to \mu\bar{\mu}jj \]