Photon associated top-quark pair production A study at NLO QCD with off-shell effects

Manfred Kraus G. Bevilacqua, H. B. Hartanto, T. Weber, M. Worek

LoopFest 2018 Michigan State University 17. July 2018

- Motivation
- Current status of $t\bar{t}\gamma$
- NWA vs. off-shell effects
- Results for $t\bar{t}\gamma$ in di-lepton channel
- Conclusions

Motivation for $t\bar{t}\gamma$

The study of (associated) $t\bar{t}$ production has a wide range of applications...

- SM benchmarks (e.g. $t\bar{t}$ cross section)
- precision measurements of SM parameters (e.g. m_t)
- probing Higgs-Yukawa sector (e.g. $t\bar{t}H$)
- constraining PDFs (especially gluon at large *x*)
- searches for BSM physics (e.g. heavy resonances decaying to tops)
- $t\bar{t}\gamma$ direct measurement of top charge $\sigma_{t\bar{t}\gamma} \sim Q_t^2$
- Indirect from $t\bar{t}$: $Q_t = Q_W Q_{b-jet} = +\frac{2}{3}$

[Melnikov, Schulze, Scharf '11]

• Probe the structure of the $t\bar{t}\gamma$ vertex

$$\mathcal{L}_{t\bar{t}\gamma} = -eQ_t \ \bar{t}\gamma^\mu tA_\mu - e\bar{t}\frac{i\sigma^{\mu\nu}q_\nu}{m_t}(d_V^\gamma + id_A^\gamma\gamma_5)tA_\mu$$

[Aguilar-Saavedra '09]

- Constraints on anmalous couplings
- Measure cross section ratio

$$\mathcal{R} = \frac{\sigma_{pp \to t\bar{t}\gamma}}{\sigma_{pp \to t\bar{t}}} , \qquad \frac{d\mathcal{R}}{dX} = \frac{d\sigma_{pp \to t\bar{t}\gamma}/dX}{d\sigma_{pp \to t\bar{t}}/dX}$$

- Various uncertainties cancel in ratio
- More stable with respect to radiative corrections
- Can probe new physics at the LHC

tīγ HELAC-PHEGAS 6400 $m_t = 173.2 \text{ GeV}$ tīZ 3200 CT14llo PDF tīH 1600 $t\bar{t}W^{+}$ σ [fb] 800 tī₩ 400 200 100 50 8 13 27 \sqrt{s} [TeV]

Status of $t\bar{t}\gamma$

Experimental:

- First evidence: CDF @ TeVatron
- Observation: ATLAS @ LHC 7 TeV
- Measurements: LHC 8 TeV

[CDF Collaboration '11]

- [ATLAS Collaboration '15]
- [ATLAS, CMS Collaboration '16]

on-shell tops: Corrections only to the production mechanism

NLO QCD fixed-order

[Duan, Guo, Han, Ma, Wang, Zhang '09 '11] [Maltoni, Pagani, Tsinikos '15]

• NLO EW fixed-order

[Duan, Guo, Han, Ma, Wang, Zhang '16]

Towards more realistic final states

• Powheg + Pythia \rightarrow no spin correlations, top decay in PS

[Kardos, Trocsanyi '14]

• NLO QCD in NWA \rightarrow spin correlated, radiative decays

[Melnikov, Schulze, Scharf '11]

• Full off-shell calculation in dilepton channel

$t\bar{t}\gamma$ in NWA @ LHC

Large contribution from radiative top decays

 $\sigma^{\rm NLO} = 138.1 {\rm fb}$ $\sigma_{\gamma-Prod.}^{\text{NLO}} = 60.9 \text{fb}$, $\sigma_{\gamma-Dec.}^{\text{NLO}} = 77.2 \text{fb}$

[Melnikov, Schulze, Scharf '11]

Quality of the NWA?

- Keep diagrams with only two resonant top-quarks
- Sufficiently accurate for inclusive observables: $\Gamma_t/m_t \sim 0.8\%$
- Confirmed case-by-case:

• $t\bar{t}$ (semi-lepton)

• $t\bar{t}H$ (di-lepton)

• $t\bar{t}$ (di-lepton) [Denner, Dittmaier, Kallweit, Pozzorini '11'12]

[Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11]

- [Denner, Pellen '18]
- [Denner, Feger '18]
- [Bevilacqua, Hartanto, MK, Worek '16'18]
- [Bevilacqua, Hartanto, MK, Weber, Worek '18]

tt̄j (di-lepton) *tt̄γ* (di-lepton)

NWA vs. Off-shell effects in $t\bar{t}$

- Comparison: NWA @ NLO QCD vs. Full off-shell @ NLO QCD
- Large off-shell effects, where $t\bar{t}$ is suppressed as a signal
- Important as background to Higgs and BSM searches

[Denner, Dittmaier, Kallweit, Pozzorini, Schulze '12]

Can impact top-quark mass determination in $pp \rightarrow t\bar{t}j$

$$\mathcal{R}(m_t,\rho_s) = \frac{1}{\sigma_{t\bar{t}j}} \frac{d\sigma_{t\bar{t}j}}{d\rho_s}(m_t,\rho_s) \qquad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}}$$

[Bevilacqua, Hartanto, MK, Worek, Schulze '18]

Theory, NLO QCD CT14 PDF	$m_t^{out} \pm \delta m_t^{out}$ [GeV]	Averaged $\chi^2/d.o.f.$	Probability <i>p-value</i>	$m_t^{in} - m_t^{out}$ [GeV]	
31 bins					
<i>Full</i> , $\mu_0 = H_T/2$	173.38 ± 1.34	1.04	0.40 (0.8σ)	-0.18	
<i>Full</i> , $\mu_0 = E_T/2$	172.84 ± 1.33	1.05	o.39 (0.9 <i>σ</i>)	+0.36	
Full, $\mu_0 = m_t$	174.11 ± 1.39	1.07	0.37 (0.9 <i>σ</i>)	-0.91	
NWA, $\mu_0 = m_t$	175.70 ± 0.96	1.17	0 .24 (1 .2 σ)	-2.50	
$NWA_{Prod.}, \mu_0 = m_t$	169.93 ± 0.98	1.20	0 .2 0 (1.3σ)	+3.27	
	5 bins				
<i>Full</i> , $\mu_0 = H_T/2$	173.15 ± 1.32	0.93	0.44 (0.8σ)	+0.05	
<i>Full</i> , $\mu_0 = E_T/2$	172.55 ± 1.18	1.07	0.37 (0.9 <i>σ</i>)	+0.65	
Full, $\mu_0 = m_t$	173.92 ± 1.38	1.48	0 .2 0 (1.3σ)	-0.72	
NWA, $\mu_0 = m_t$	175.54 ± 0.97	1.38	0 .24 (1 .2 σ)	-2.34	
$NWA_{Prod.}, \mu_0 = m_t$	169.37 ± 1.43	1.16	0.33 (1.0 <i>0</i>)	+3.83	

[Bevilacqua, Hartanto, MK, Worek, Schulze '18]

Full off-shell $t\bar{t}\gamma$ @ NLO

- 628 diagrams for gg channel for $t\bar{t}\gamma @ O(\alpha_s^2 \alpha^5)$
- 36032 one-loop diagrams for gg channel for $t\bar{t}\gamma @ O(\alpha_s^3 \alpha^5)$
 - includes up to 958 hexagons and 90 heptagons
 - scalar integrals with complex masses
 - NWA only up to pentagons!
- Number of sutraction terms for representative subprocesses

Subprocess	# Diags	# CS dipoles	# NS dipoles
$gg \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma g$	4348	27	9
$qg \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma q$	2344	15	5
$\bar{q}g \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma \bar{q}$	2344	15	5
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}\gamma g$	2344	15	5

• NEW: Ntuple generation + re-weighting for different $\mu_{R,F}$ and PDFs

Setup for LHC 13 TeV

Final state and parameters

- Fully leptonic decays: $pp \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma + X$
- Light quarks (also bottom) and leptons are massless $\rightarrow 5~\text{FS}$
- Top quark mass and width: [Jesabek,Kühn,'99, Denner et al. '12] $m_t = 173.2 \text{ GeV}$ $\Gamma_t^{\text{LO}} = 1.47834 \text{ GeV}$ $\Gamma_t^{\text{NLO}} = 1.35146 \text{ GeV}$
- Complex Mass Scheme: $m_t^2 \rightarrow m_t^2 im_t \Gamma_t$ [Denner et al. '99, '05]

Kinematics

- exactly 2 b-jets, 1 photon, 2 charged leptons, missing *p*_T
- partons with $|\eta| < 5$, anti- k_T , $\Delta R = 0.4$
- cuts:

$$\begin{split} p_{T\,\ell} &> 30 \; \text{GeV} \;, \qquad p_{T\,b} > 40 \; \text{GeV} \;, \qquad p_T > 20 \; \text{GeV} \;, \qquad p_{T,\gamma} > 25 \; \text{GeV} \;, \\ \Delta R_{bb} &> 0.4 \;, \qquad \Delta R_{\ell\ell} > 0.4 \;, \qquad \Delta R_{\ell b} > 0.4 \;, \\ |y_\ell| &< 2.5 \;, \qquad |y_b| < 2.5 \;, \qquad |y_\gamma| < 2.5 \end{split}$$

- Frixione isolation: $R_{\gamma i} = 0.4$
- For hard photon: $\alpha = \alpha(0) = 1/137$

[Frixione '98]

- fixed scale: $\mu_0 = m_t/2$
- at LO: $gg \sim 79\%$, and $q\bar{q} \sim 21\%$
- Photon radiation dominated by final state radiation
- NLO corrections: -10%

• Assuming same setup for LO and NLO

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{LO}}}{\sigma_{t\bar{t}}^{\text{LO}}} = (4.94 \pm 0.08) \cdot 10^{-3}$$
$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{NLO}}}{\sigma_{t\bar{t}}^{\text{NLO}}} = (4.56 \pm 0.28) \cdot 10^{-3}$$

- uncertainties from scale dependence assuming correlation of the processes
- -8% NLO corrections
- $\pm 6\%$ scale uncertainties at NLO \rightarrow underestimated at LO
- Ratio more stable against radiative corrections
- Allows to probe new physics at the LHC

Distributions

- Impact of corrections on differential distributions?
- Focus on BSM relevant observables $p_{T,\gamma}$ and $\Delta R(b_2, \gamma)$

[Baur, Buice, Orr '01]

[Baur, Juste, Orr, Rainwaiter '04]

- *p*_{*T*,γ}
- Uncertainties: (μ_R, μ_F) envelopes
- K-factor: -8% to -18%
- Stable wrt radiative corrections
- Good candidate for BSM searches

Distributions

- Impact of corrections on differential distributions?
- Focus on BSM relevant observables $p_{T,\gamma}$ and $\Delta R(b_2, \gamma)$

[Baur, Buice, Orr '01]

[Baur, Juste, Orr, Rainwaiter '04]

- $\Delta R(b_2, \gamma)$
- Uncertainties: (μ_R, μ_F) envelopes
- K-factor: -29% to +122%
- Shape distortion up to 150%
- Similar effect in other observables

[Bevilacqua, Hartanto, MK, Weber, Worek '18]

Conclusions

Conclusions

Full calculation of $pp \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma + X$ **at NLO QCD**

- NLO QCD corrections for $t\bar{t}\gamma$ with all resonant and non-resonant contributions completed
- Includes:
 - QCD corrections to production and radiative decays of tops
 - Photon radiation from tops and top decay products
 - Spin correlated top decays
 - off-shell effects
 - QCD corrections to non-resonant background processes

Outlook:

- Dynamical scales, PDF uncertainties
- Comparison with NWA approximation
- Anomalous top-quark couplings

$$\mathscr{L}_{t\bar{t}\gamma} = -eQ_t \ \bar{t}\gamma^{\mu}tA_{\mu} - e\bar{t}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_t}(d_V^{\gamma} + id_A^{\gamma}\gamma_5)tA_{\mu}$$

• Relevant for BSM searches

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}}{\sigma_{t\bar{t}}} , \quad \frac{d\mathcal{R}}{dX} = \frac{\sigma_{t\bar{t}\gamma}/dX}{\sigma_{t\bar{t}}/dX}$$