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Color-singlet production at the LHC
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» pr,u is one of the more important observables for current Higgs studies at the LHC:
- “easy” to measure
- possible to probe deviation from SM, in tail, but also at medium-small pr i

» pr,v and ¢* data are extremely precise:

- SM measurement: test QCD at higher orders, extract PDFs, ...
- W-mass extraction: modelling of pr w and pr z is crucial
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Transverse observables in color-singlet production

Transverse and inclusive observables in color-singlet production offer a clean experimental and
theoretical environment for precision physics.

VIR = deae@) (35) | (VR k) = V(h o+t )|

» direct probe the kinematics of the color-singlet

» sensitivity to non-perturbative effects (hadronisation, intrinsic kt) only through transverse
recoil

» very limited/no sensitivity to multi-parton interaction

1. soft/collinear limit: v — 0 = resummation of large logarithms L = log(1/v).
Logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross

section 2
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2. matching to accurate (NNLO) fixed order results is also needed



V/H at small transverse momentum

Aside from the obvious need to resum large logarithms, the p; — 0 limit is also theoretically
interesting:

V{BY, k1. kn) = [kt + oo + Een| == e

» p: is a vectorial quantity — it absorbs the recoil of all emissions k; ;
» when p; — 0, two mechanism compete:

- Sudakov (exponential) suppression when kq; ~ p:

- azimuthal cancellations when ky; > pe

mﬂ‘/«ﬁ“{a%

e

» the latter mechanism is dominant when p;, — 0: £(p;) ~ p? [Parisi,Petronzio '79]
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resummation in momentum-space

» hierarchy in log(M/p:) doesn't work, as neglected effects actually dominate the limit. It's
impossible to recover power behaviour at any given order in L.
» Moreover, at any log order in L = log(M/p¢), resummation in direct space cannot be, at the
same time, free of subleading terms and of spurious singularities at finite p;
[Frixione,Nason,Ridolfi '98]
» when going in b-space, the vectorial nature of azimuthal cancellations is taken care by a
Fourier transform [Parisi,Petronzio '79, CSS '85, Bozzi et al. ‘05, Becher et al. '10-'12]
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C/H: [Catani,Grazzini '11-'12, Gehrmann et al. '14]

anom. dimensions: [Davies,Stirling 84, De Florian,Grazzini ‘01, Becher,Neubert '10, Li,Zhu / Vladimirov ’16]

=- resummation directly in momentum space now possible
[Monni,ER,Torrielli *16, Bizon,Monni,et al. *17]
[Ebert,Tackmann ’'16]
[Kang,Lee,Vaidya '17]
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small p; resummation in momentum space (l)

» Write all-order cross-section for v = p; (V({p}, k1 ... kn) = |ke1 + ... + ktnl)
o0 n
2(v) = /dchV(@B) Z/H[dki}mi(ﬁl,ﬁg,kl,...7l<:n)|2@(v—V({ﬁ},k1...kn))
n=0 =1
V(@) : all-order form factor |M(p1,p2, kl,...,kn)\2 : real emissions

» re-organize multiple-emission squared amplitudes into (iterations of) “n-particle-correlated
blocks”

M1, P2, K)|?
[Mp (1, P2)|? =

|8 (k)|* =

_|M($1, 52, ka, kp)|?

T I
— Ik T ()

» each |M(p1, P2, k1, ..., kn)|? can be rewritten as a sum of products of |M|2.

» the rIRC safety of the observable guarantees an hierarchy between the different blocks
(n-particle — one higher log-order than n — 1-particle):
LL 2 | MO (k) |2 s NLL : | MO (Ko, k)12, | MDD (k)% ;..




small p; resummation in momentum space (ll)

» for inclusive observables, radiation within each block can be integrated before evaluating the
observable (keeping a fixed k; and rapidity).

|M(B1, P2, k1, k)2 — [Mp(p1,52)[>

L[5/ - (27 T 7 s ;
x— {H (\,\/(/.;, )% + / [dka][dkp] | M (ka, k)26 (Fta + Ky — kes)6(Yap — Y5)

i=1
+/ [dka][dkp][dke]| M (Ka, K, ko) |20 (Ko + Eep + kte — k)0 (Yape — Yi) + . ... ) }

» now we need to cancel (at all orders) the IRC poles between V and real emissions

. introduce a resolution scale ek;; (not € p¢)
. emissions with k;; < eky1 are unresolved. They don’t contribute to the observable,
hence they exponentiate — regularize virtual corrections and leave a Sudakov factor:

21 & dki1 dop1  pick
V(CPB) Z ﬁ H (--->@(€kt1 — ktz’) N/ k:l ;6 R( ktl)R/(ktl)
n=0 """ i=1

where

R(ekt1) Z/k %Rekt Z/
€k €

. A and B as in CSS, with differences starting at N3LL.
. resolved blocks contribute to the observable: treated exclusively in 4 dimensions,
parametrized as derivatives of the Sudakov (R’ (k¢;)), generated as MC events

M dky

* (Astas()n Akﬁ + Bufas(h))

k1
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small p; resummation in momentum space (lll)

» final result:
- M dky 27 do
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- ¢ =kei/knn T and T(©) anomalous dimensions of PDFs and coeff. function

- ¢ dependence in the resolved emissions cancels against the one in the Sudakov,

leaving <" effects

- at any logarithmic order only a finite number of DGLAP-evolution steps
necessary: can do the Mellin inversion and have only quantities in momentum
space (with convolutions)
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comments |

» role of subleading terms
- logarithmic counting is defined in terms of log(M /k¢;).

- in the Sudakov limit, the hierarchy in log(M/p:) makes sense, one has k; ~ pi ~ 0.

- same as resummation of log(M /p.), i.e. log accuracy in log(M/k.;) translates into the
same accuracy in log(M /p.), plus subleading terms.

- similar conclusions were found by Ebert, Tackmann '16
» resolved k;; are of the same order of k;;
- expand k¢; around k¢ in the resolved radiation at the desired logarithmic accuracy.

- higher-order corrections to the NLL resolved reals: one correction at a time [one at
NNLL, two at N3LL,...]

d¥(v) dkyy déy —R(ky1) / , _
= —aor (— t1) o k dZ[{R',k;}]©® (v -V Jk1, . ky
el b A O waLp (k) [ 2[R k1O (0 = V{5) by )
+ (1 correction)
+ (2 corrections)

- NLL real emissions dZ[{R’, k;}] generated as a parton shower
- H and C absorbed in £

» we did many checks; among them, we reproduced the CSS result (and, by doing this,
extracted the correct A and B)



comments Il

» azimuthal cancellations [at NLL, with £ = 1 for simplicity]
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matching to fixed order |

» all the above has been implemented in a MC code (RadISH)

» we have obtained resummed+matched results (at N3LL+NNLO) for Higgs and Drell-Yan
production

- N3LO (for Higgs) from Anastasiou et al., '15
- pp — Hj at NNLO: first paper: Boughezal, Caola, et al., '15
- results presented here [pp — Hj and pp — Zj] NNLOJET, Chen et al., '16
- anomalous dimension Li, Zhu 16, Vladimirov *16 (except 4-loop cusp)

» expansion of resummation vs. fixed-order
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matching to fixed order |l

pt do — if <KL MB
b)) P — d ;2 res .
(P, ®) /O Pt ap,dd { —Sro. ifp 2 Mp
additive matching multiplicative matching
dd ult
E?natched(v) = Z;ﬁ;t;hed (U) =
Eres(v) + EF.O.('U) - Ems,exp(v) » (’U) EF4O.(/U)
res Eres,exp (U)
» there’s no rigorous theory argument to favour a prescription over the other
- additive: probably the more natural choice, - multiplicative: numerically more stable, as
simpler and clear physical suppression at small v fixes
- numerically delicate when p; — 0 potentially unstable F.O. results
(F.O. result needs to be extremely stable) - allows to include constant terms from F.O.

» to avoid contamination of hard region from resummation, we use modified logs:

In(Q/kt1) — %ln (1 + (k%)p)

» improved multiplicative matching (to avoid spurious (1 + O(a2)) terms)

E1res('U) Yr.0 ('U)j| .
— Eres,as m — déB hm [’NkLL
exp i L—0

mult _
matched (’U) - Zres,ausym 5
res ('U) with cuts

2ws,asym
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» on the right: fiducial distribution (we didn’t have it last year)
» good convergence pattern
» NB3LL correction amount to few %
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» with 4 = my /2, important cancellations (with . = m g, bands are larger)
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Drell-Yan p;
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[Bizon,Chen,Gehrmann-De Ridder,Gehrmann,Glover,Huss,Monni,ER,Rottoli, Torrielli *18]
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» good convergence and good agreement with data

(1/0)d= /dpf

Ratio to data
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» for pr z > 20 GeV, NNLO seems perfectly adequate to describe data
» leftover uncertainty at small p; is at the few-percent level
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Drell-Yan ¢*

Ratio to data
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- 0™ angle between electron and beam axis, in Z

boson rest frame

- ATLAS uses slightly different definition:
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TH convergence pattern is good
for * < 0.2 resummation is relevant

in the low invariant-mass region, disagreement with data at medium-large values, already

observed previously

Ratio to data
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conclusions

» higher-order resummation can be formulated directly in momentum space
(without the need for a factorisation for the considered observable)

» shown results for Higgs and Drell-Yan

» can be easily extended to other color-singlet processes (for sure W)

» possible developments
» closer connections to a parton-shower formalism

» might allow joint resummation (the k;; are not integrated over), although accuracy
needs to be carefully addressed

» we haven't included any assessment of NP effects, quark-mass corrections, QED,
theory uncertainties in PDFs...(probably need to study them for W-mass extraction)

Thanks for your attention



