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 Phenomenology:

 NNLO phenomenology at the LHC has cleared 2➛ 2 processes. 

 However, the 2➛ 3 ones, like 3 jet production, are still an open problem.

 The existing methods can in principle compute such processes at NNLO. The 
corresponding 2-loop amplitudes are the only missing ingredient

 Amplitudes:

 They are the basic building blocks of the theory:

“knowing all correlation functions means knowing the theory”

 A number of amplitude-specific “formal” motivations like:

 Structure of the results
 Functions and symmetries
 Testing/developing approaches for their calculation

Intro: why the five-point QCD amplitudes?
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 A number of parallel developments in the last several years

 Mostly based on approaches trying to utilize/extend unitarity to two loops. This makes sense: 

 Unitarity has been extremely successful at one-loop for QCD/collider applications

 For multiloop developments in N=4 SUSY and related theories.

Five-point amplitudes in QCD: past results
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 Our interest in this problem is twofold

1. Phenomenological applications at NNLO for 2 ➛ 3 processes at the LHC

2. Our fascination with the IBP identities

 They contain incredible amount of information about the problem. 

 Solving them however becomes a difficult problem even at 2 ➛ 2 at 2 loops (with many 

scales)

 Improvements in the way we solve the IBP identities is highly desirable if we want to increase 
the scope of problems that can be tackled with the IBP’s

 Laporta algorithm has been a major breakthrough 

 Approaches leading to abstract solution of the system of IBP’s are likely needed

 Recent work in this direction:

 This present work is a step in this direction. It adds to our understanding about how to think 
about this problem.

Five-point amplitudes in QCD: our interest in this

David Kosower ‘18

Chetyrkin, Tkachov ‘81
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 A generic bare massless amplitude M is expressed through Feynman integrals

• Ii are Feynman integrals
• N is large (104 – 105 in 2->3 case)
• fi are some simple rational coefficients

 In this work we will consider squared amplitudes M=<A(2)|A(0)> but this is not essential

 IBPs relate generic integrals to O(100) master integrals

 As a result the amplitude is expressed through a small number of masters with (very large) 
rational coefficients

 Solving the problem means:

1. Solve the IBPs
2. Compute the master integrals

Five-point amplitudes in QCD: notation
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 I think it is well appreciated that a straightforward application of the Laporta algorithm with 
existing programs for solving IBPs is a very hard problem

 We propose a slightly modified strategy which allows to solve the IBP identities for one MI at a 
time.

 One may wonder why would this even be useful?

 In simple problems one can derive all masters in one go
 In complicated problems the coefficients become very large so the memory requirements 

explode. 
 By solving for one master at a time one limits the memory requirement as well as the 

number of expressions that need to be simultaneously evaluated.

 A negative: one needs to rerun the IBP identities many times, as many as there are 
masters. In practice this is not a problem because 

• This is easy to parallelize
• The run times are vastly different so the whole problem takes almost as much as the 

most complicated master.

Solving the IBPs: our approach

AIR: Anastasiou, Lazoupoulos
FIRE: Smirnov, Smirnov
Reduze (2): von Manteuffel, Studerus
KIRA: Maierhöfer, Usovitsch, Uwer

Possibly related developments in KIRA – see talk by Johann Usovitsch



5-point amplitudes with IBP's                                                       Alexander Mitov                            Loopfest 2018, MSU, 20 July 2018

1. Determine the set of masters (ask Reduze, LiteRed or do numerics or something else). Not a 
problem 

2. Set all masters but one to zero. Run the full set of IBPs. Once the solution is complete one 
gets the coefficient of the one master that was non-zero

3. Repeat the above step for all masters 

4. The full solution is simply the sum of the above 

 The above works like projecting the problem onto one master at a time and solving for 
(almost) just this one projection 

 Why the above should work?

• The IBP system of equations is linear and homogeneous

• Assuming each integral is a linear combination of masters then at each step the IBP’s do 
not mix the various projections. Thus setting one to zero (i.e. removing it from the 
problem) does not interfere with the remaining ones.

 This strategy us unrelated to how the IBP equations are solved. In practice we will use 
Laporta.

Solving the IBPs: our strategy
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 Here are the reasons our strategy simplifies the solving of the IBPs:

1. Limits memory needs (mentioned above) due to smaller number of coefficients that are 
actively computed at the same time.

2. Many sectors become zero-sectors from the outset. This is a major simplification in 
practice. This should be used with some care in non-standard problems like propagators 
with non-integer powers.

3. The information about vanishing masters is incorporated into the solution early on in the 
solving (which makes it more efficient). This is because, using Laporta, master integrals 
and seeds for solving the equations are generated with the same algorithm.

4. The calculation of the various masters can be parallelized. This is restricted mainly by the 
amount of available memory. In practice we observe strong hierarchy among the 
masters. Basically, the time and RAM it takes to compute the slowest master can 
accommodate all others.

Solving the IBPs: our strategy

Def: a zero-sector is a sector that has no masters or a sub-sector that has masters
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 We consider the process qq ➛ q’q’g (no special reason – easy to generate)

 The amplitudes involve up to 8 propagators (11 needed for the reduction)

 There are four topologies with 8 propagators and several with less than that

Results for 2➛3

3

two-loop four-point amplitude (cross-checked with the
program Reduze [34, 35]) and a number of two-loop five-
point planar and non-planar cases as explained in detail
in sec. I I I.

At this point it will be beneficial to cont rast our st rat -
egy to the usual way of solving IBP ident it ies and to
discuss the origin of increased efficiency. To this end we
need to int roducethenot ion of sector which iswell-known
in the IBP literature.

A sector is e↵ect ively a sub-topology indexed by 0s
and 1s and defined by the posit ion of a subset of propa-
gators. For example, [1, 1, 1, 0, . . . , 0] represents a sector.
In the notat ion of eq. (4) this sector contains all integrals
I (n1, . . . , nP ) for which n1,2,3 > 0 while n4,...,P 0. The
number of di↵erent propagators that define a sector is
called its weight. For example, the sector [1, 1, 1, 0, . . . , 0]
is of weight 3. A sector is called a zero-sector if all in-
tegrals that belong to it vanish. For the massless two-
loop five-point amplitudes, all sectors with weight < 3
are zero-sectors. Some sectors with weight ≥ 3 are also
zero-sectors.

Our st rategy can lead to a more efficient solving of the
IBP system for several reasons. First , once N̂ − 1 masters
are set to zero, many sectors become zero-sectors and
thus do not need to be computed. In pract ice, this is a
major simplificat ion.

Second, set t ing masters to zero at the outset of the
calculat ion simplifies the intermediate steps. The reason
is that , taking the example of the Laporta algorithm, the
IBP equat ions that will be solved first are generated from
seeds that are in some sense close to the master integrals.
1 In this way the informat ion about vanishing masters
is incorporated into the result ing IBP equat ions early
on in the solving process. In large systems with many
masters, our st rategy could lead to a significant reduct ion
in the size of the intermediate expressions. This, in turn,
would reduce the computer memory requirement that is
the limit ing factor in solving large problems.

Third, by solving for one master at a t ime one can
parallelize the problem by comput ing several project ions
at the same t ime. The amount of parallelizat ion achieved
is only rest ricted by the available computer memory and
CPU. One should keep in mind that , as we explain in
sec. I I I , the run-t imes for di↵erent masters can be vast ly
di↵erent .

I I I . R ESU LT S

For definiteness, in this work we focus on the squared
two-loop amplitudeM = hA (2) |A (0) i for theprocessqq̄ !
q0q̄0g. From the viewpoint of the IBPs it is representat ive

1 Assuming that , as is usually the case, t he masters are chosen wit h

the help of the same ordering criterion that is used to generate

the seeds for solving the IBP equat ions.
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FIG. 1: The 8-propagator topologies B 1 , B 2 , C1 and C2 . B 1

and C1 are the most complicated non-planar and planar
topologies, respect ively.

of the other massless five-point two-loop amplitudes.

The Feynman integrals appearing in M belong to sev-
eral topologies. We label the family of non-planar ones
B and the family of planar ones C. There are two non-
planar topologies (B1 and B2) that have the maximum
possible number of propagators (eight) as well as two
computat ionally simpler topologies with fewer than eight
propagators. For the planar case, we have two topologies
with eight propagators (C1 and C2) and one more, C3,
with seven propagators. All master integrals needed in
the computat ion of the three planar C topologies have
been computed in analyt ic form [30] within the approach
of ref. [58]. The four topologies with the maximum num-
ber of propagators are shown in fig. 1.

The B and C families of topologies are defined through
the following sets of 11 propagators:

B = k2
1 , k2

2 , (k1 + p1)2, (k1 + p1 + p2)2,

(k2 − p3)2, (k2 − k1 − p3)2,

(k2 − k1 − p1 − p2 + p4)2, (k2 + p4)2,

(k2 + p1 + p2)2, (k2 + p1)2, (k1 + p3)2
 

(7)

C = k2
1 , k2

2 , (k1 + p1 + p2)2, (k1 − k2)2,

(k2 + p1)2, (k2 + p1 + p2)2, (k2 − p3)2,

(k1 + p1 + p2 − p3)2, (k1 + p1 + p2 − p3 − p4)2,

(k2 − p3 − p4)2, (k1 + p1)2
 

. (8)

The momenta p1 and p2 are incoming while p3 and p4

are the two independent outgoing momenta.

The four 8-propagator topologies shown in fig. 1 as
well as the 7-propagator one, C3, are defined by their
highest-weight sectors (see sec. I I for definit ions)

B1 = B [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] ,

B2 = B [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1] ,

C1 = C [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0] ,

C2 = C [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1] ,

C3 = C [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1] . (9)
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Hard Easier
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The momenta p1 and p2 are incoming while p3 and p4

are the two independent outgoing momenta.

The four 8-propagator topologies shown in fig. 1 as
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 We determined all masters. We 
find: 
• 113 masters in B1, 
• 75 in B2, 
• 62 in C1, 
• 28 in C2.

Results for 2➛3 3
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 We solved the IBPs for topologies C1 and 
C2 for all required numerator powers: 
• -5 for C1
• -4 for C2

 The coefficients of the highest weight 
masters in:
• B1 (9 masters)
• B2 (3 masters)
• Both for numerator powers of up to -6

 The results are available for download from 
here (22 GB in total):

http://www.precision.hep.phy.cam.ac.uk/results/amplitudes/

http://www.precision.hep.phy.cam.ac.uk/results/amplitudes/
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 The first check was the recalculation of the 2 ➛ 2 amplitudes versus Reduze.

 The results of these papers can be used to relate the integrals in C1 with numerators of 
power -5 to numerators with lower power. We have checked this is consistent with our direct 
evaluation of the coefficients in C1

 Non-trivial checks in topology B2: in this paper the results for B2 were presented for powers 
up to -4. We checked that the coefficients of the highest weight masters (i.e. the top sector) 
agree. 

 To the best of my understanding, this reference claims that the planar topologies have been 
computed up to powers of -5. However no results are presented, or details given, so we 
cannot compare.

Results for 2➛3: checks
3
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the help of the same ordering criterion that is used to generate

the seeds for solving the IBP equat ions.
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FIG. 1: The 8-propagator topologies B 1 , B 2 , C1 and C2 . B 1

and C1 are the most complicated non-planar and planar
topologies, respect ively.

of the other massless five-point two-loop amplitudes.

The Feynman integrals appearing in M belong to sev-
eral topologies. We label the family of non-planar ones
B and the family of planar ones C. There are two non-
planar topologies (B1 and B2) that have the maximum
possible number of propagators (eight) as well as two
computat ionally simpler topologies with fewer than eight
propagators. For the planar case, we have two topologies
with eight propagators (C1 and C2) and one more, C3,
with seven propagators. All master integrals needed in
the computat ion of the three planar C topologies have
been computed in analyt ic form [30] within the approach
of ref. [58]. The four topologies with the maximum num-
ber of propagators are shown in fig. 1.

The B and C families of topologies are defined through
the following sets of 11 propagators:

B = k2
1 , k2

2 , (k1 + p1)2, (k1 + p1 + p2)2,

(k2 − p3)2, (k2 − k1 − p3)2,

(k2 − k1 − p1 − p2 + p4)2, (k2 + p4)2,

(k2 + p1 + p2)2, (k2 + p1)2, (k1 + p3)2
 

(7)

C = k2
1 , k2

2 , (k1 + p1 + p2)2, (k1 − k2)2,

(k2 + p1)2, (k2 + p1 + p2)2, (k2 − p3)2,

(k1 + p1 + p2 − p3)2, (k1 + p1 + p2 − p3 − p4)2,

(k2 − p3 − p4)2, (k1 + p1)2
 

. (8)

The momenta p1 and p2 are incoming while p3 and p4

are the two independent outgoing momenta.

The four 8-propagator topologies shown in fig. 1 as
well as the 7-propagator one, C3, are defined by their
highest-weight sectors (see sec. I I for definit ions)

B1 = B [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] ,

B2 = B [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1] ,

C1 = C [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0] ,

C2 = C [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1] ,

C3 = C [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1] . (9)

Gluza, Kajda, Kosower ’10

Kosower ‘18

Boehm, Georgoudis, Larsen, Schoenemann, Zhang ‘18

Boels, Jin, Luo ‘18
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 The calculation is implemented in our own private code

 Code written in C++. Runs are very stable.

 The bottleneck is the manipulation of rational expressions.

 To that end we use the program Fermat and find it indispensable (with many thanks to Robert 
Lewis for support)

 The run times are vastly different

 Easiest for the complicated masters: takes minutes
 Hardest for the easiest masters (ones with 3 propagators): took several weeks
 Even among the masters of weight 3 there is a run-times difference of factor of 10.

 Compressed solutions for C1 are about 20 GB. This includes integrals with squared 
denominators.

 Coefficients are not simplified in any way (fully expanded form)

 We have not attempted anything fancy in the definition of the IBP equations (defined in terms 
of the external and/or loop momenta). One can improve here.

Some details about the calculation

R. H. Lewis, http://home.bway.net/lewis/
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 In principle one can compute the planar amplitude now

 The masters for C1 and C2 are known analytically

 They are available as a Mathematica code in terms of GPLs

 The evaluation of the GPLs for complex argument can be done with GINAC

 We have tested all this and computed it in few points

 This is not yet a solution to the problem of the amplitude:

 One has to derive the finite remainder (easy once the non-planar is also available)

 Computing in Minkowski using the analytic continuation of GINAC is not optimal for 
practical evaluation of the amplitude.

 There are many crossings. This significantly increases the number of integrals to be 
evaluated.

 The above mean that obtaining useable amplitude for phenomenological applications is 
another step after all is put together. We have certain ideas and are developing them at 
present.

Putting it all together: from IBPs to amplitudes

Papadopoulos, Tommasini, Wever ‘15
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 The calculation of the 2 ➛ 3 massless amplitudes in QCD is seriously underway and many new 

approaches are starting to make real progress

 The planar amplitudes are now available.

 Non-planar are still non-existent. In particular, the non-planar masters are not yet known.

 We have proposed a new strategy for the solving of the IBP identities which scales better for 
complicated problems (multiscale ones but we also suspect it will be useful in multiloop ones)

 We have been able to analytically evaluate the IBPs needed for any planar 2 ➛ 3 amplitude. 

Results publicly available for download.

 We are starting now the running for the non-planar topologies which is much more 
complicated

 Hope to have results to report at the next Loopfest!

 I am confident that 2 ➛ 3 phenomenology at NNLO will be available in time for the HL-LHC 

(and maybe even for the next LHC run).

Conclusions and outlook


