Ultra-peripheral collisions at the HL/HE-LHC with ALICE

C. Mayer (IFJ Krakow) on behalf of the ALICE collaboration HL/HE-LHC WG1 Meeting – QCD physics 2/3/2018

Estimates for expected number of events for:

- Multi-differential studies for J/ ψ and Ψ (2S) production
 - − b-slope dependence \rightarrow transverse gluon distributions (1611.05471)
 - ZDC \rightarrow disentangle low-x and high-x contributions
- High-mass vector mesons
 - Ψ(3S) → DDbar (not measured at HERA)
 - Υ production
- Inclusive photonuclear charm production
 - σ (γ gluon → c cbar) ≈ 1b
 - − Pb+Pb \rightarrow Pb+c+cbar+X
- coherent UPC Φ production

Expected integrated luminosities: PbPb: 10/nb @0.5T, 3/nb @0.2T pPb: 50/nb (ALICE LoI baseline)

Possible contributions from ALICE / 2

Estimates for expected number of events for:

- γγ processes
 - $-\eta_{c}(\chi_{c0},\chi_{c2})$ production
 - $-\gamma\gamma \rightarrow 4\mu$: double-VM production, *e.g.* $\gamma\gamma \rightarrow J/\psi J/\psi$, $\rho^0 J/\Psi$
 - $\gamma \gamma \rightarrow ppbar (\eta_c \rightarrow ppbar), \gamma \gamma \rightarrow \gamma \gamma$
- Jet photoproduction (ALICE is probably not competitive)
 - direct access to the gluon distribution (ATLAS-CONF-2017-011)

Besides in UPC, signs of coherent photo-production have been found in peripheral collisions

Summary

- We need to understand how the UPC part is shared between WG1 and WG5
- There is an active physics analysis group for UPC in ALICE

 several members are interested in contributing to the Yellow Report

Appendix

Expected number of events for L^{int} = 10/nb in Pb-Pb

process	central barrel	muon arm	Comments		
$J/\psi \rightarrow + -$	4.1M	620k	STARLIGHT		
Ψ(2S)	109k	15k	STARLIGHT		
Ŷ	5,260	430	STARLIGHT		
Ψ(3S)→DDbar	(acc×eff) × 5,900		$\Psi(3S) \rightarrow DDbar \rightarrow K^{+}\pi^{-} K^{-}\pi^{+}$ <u>https://indico.cern.ch/event/347071/</u>		
$\eta_{c} \rightarrow 2\pi \ 2K$	(acc×eff) × 49k		σ = 490 µb (STARLIGHT), BR(η _C → 2π2K) ≈ 0.01		
γγ $ ightarrow$ 4 μ (VV)	(acc×eff) × 310		p _T > 0.5 GeV, y < 0.9: σ ≈ 31 nb (Sczcurek e al. 1708.07742)		
$\gamma\gamma ightarrow$ ppbar	(acc×eff) × 350k		p _T > 1 GeV, y < 0.9: σ ≈ 35 μb (Szczurek et al. 1708.09836)		
$\gamma\gamma ightarrow \gamma\gamma$	240 (Ε _τ >3 GeV, η <2.4)		ATLAS: 0.45/nb 13 ev \rightarrow 10/nb 240 ev (DOI: 10.1038/NPHYS4208); ALICE/ATLAS acc \approx 7%		
UPC jets	$(acc \times eff) \times O(4M)$		ATLAS-CONF-2017-011: 110k events with 0.3/ nb in $ \eta < 3.2 \rightarrow 3.7M$ events with 10/nb		

J/Ψ, Ψ(2S), Upsilon:

- Efficiency = tracking efficiency using current AliRoot (no trigger)
- MUON arm: acc(-4.0 < y < -2.5) × eff for μ⁺μ⁻: 22%
- Central barrel: $acc(|y| < 1) \times eff$ for e^+e^- : 25%, $\mu^+\mu^-$: 27%

	σ (μb) STARLIGHT	Acceptance				Yield per 1/nb		
		y <1	-4.0 <y<-2.5< td=""><td rowspan="2">BR->µ⁺µ⁻</td><td rowspan="2">BR->e⁺e⁻</td><td colspan="2">central barrel</td><td>muon arm</td></y<-2.5<>	BR -> µ⁺µ⁻	BR -> e⁺e⁻	central barrel		muon arm
						μ⁺μ⁻	e⁺e⁻	μ⁺μ⁻
Y(1S)	103.74	40.2%	7.67%	2.48%	2.38%	279	247	43
Ψ(2S)	8110	32.7%	10.9%	7.9 × 10 ⁻³	7.9 × 10 ⁻³	5660	5240	1536
J/Ψ	41620	31.5%	11.3%	5.96%	5.97%	211k	196k	62k

Ψ(3S):

- Cross section $\approx 0.0179 \times \sigma(J/\Psi) = 745 \,\mu b$ <u>https://indico.cern.ch/event/347071/</u>)
- BR $\Psi(2S) \rightarrow DDbar \rightarrow \pi^{+}K^{-}\pi^{-}K^{+} = 52.4\% \times (3.89\%)^{2} = 7.93 \times 10^{-4}$
- Yield per 1/nb: 590 events (without acc × eff)

UPC measurements in Run1 and in Run2

Pb+Pb collisions

- softer EPA spectrum ($\omega_{max} \approx 80 \text{ GeV}$ for $\sqrt{s_{NN}} = 5 \text{ TeV}$) $\rightarrow M(\gamma\gamma)_{max} \approx 160 \text{ GeV}$
- AA (γγ) cross-sections scale as Z⁴
- gluonic cross-sections scale with A² (lower QCD background w.r.t. pp)
- low pile-up (< 1%)*
- Short LHC Pb-Pb campaigns (cf. pp)
- Proposed as a good channel to study *e.g.*
 - Anomalous gauge couplings
 - Contributions from BSM particles in the loops

pp collisions

- harder EPA spectrum ($\omega_{max} \approx 2$ TeV for $\sqrt{s} = 13$ TeV) $\rightarrow M(\gamma\gamma)_{max} \approx 4$ TeV
- large pile-up (multiple interactions per bunch crossing)
- large datasets available, O(10 fb⁻¹)
- hard to trigger on low-p_T objects

* O(10%) for EM dissociation

will be important effect @ HL-LHC

- The process $\gamma\gamma \rightarrow q\overline{q}$ is an elementary QCD process
 - Rates can be calibrated with $\gamma\gamma \rightarrow \mu^+\mu^-$
- Can do very clean QCD measurements a la e⁺e⁻
 - α_s , fragmentation functions, etc.

