

VBS in VBFNLO

Marco Sekulla

HL/HE-LHC WG1 Meeting

January 19, 2018

Institute for Theoretical Physics (ITP

VBFNLO

Vector-Boson-Fusionysics at Next-To-Leading Order

- Fully flexible parton-level Monte Carlo for processes with electroweak bosons at NLO QCD
- general cuts and distributions of final-state particles
- various choices for renormalization and factorization scales
- any pdf set available from LHAPDF
- event files in Les Houches Accord (LHA) or HepMC format (LO only)
- BLHA interface to Monte-Carlo event generators (for VBF processes with leptonic final states)
- \rightarrow NLO event output
 - process optimized implementation

Process overview

VBF-processes (VBF-approximation)

- vector bosons (W,Z,γ)
- vector boson scattering
 - fully leptonic incl. $(\ell \bar{\ell} \gamma j j)$
 - all weak semi-leptonic states
 - VBF-approximation: negligible error for $\Delta y(jj) \gtrsim 2$

VBSCAN: in preparation

- Higgs (+NLO EW, including Higgs decays)
- Higgs pair
- triboson
- diboson (+ 1 or 2 hard jets)
- Higgs + vector boson
- Higgs + two jets via gluon fusion

Full list : https://www.itp.kit.edu/vbfnlo

New Physics

- Dimension six and eight EFT operators containing bosons
- unitarization methods (for VBS)
 - Form Factor including tool to calculate needed parameters
 - generic T-Matrix unitarisation
 - respecting highest involved scale:
 M_{VV} or space-like momenta of incoming vector bosons
 - double and single charged final states: in validation
 - neutral final states: work in progress
- Two Higgs model

Example: Fiducial cross section for VBS

- for processes W[±]W[±], W[±]γ, W⁺W⁻, ZZ, W[±]Z, Zγ
 scan over lower cut on invariant mass m_{4/}
 actimation of expected number of events
- \Rightarrow estimation of expected number of events

Backup

Vertex Contributions

frame:M.Rauch List of Operators (only gauge and Higgs couplings)

$$\begin{split} \mathcal{O}_{W} &= \left(D_{\mu}\Phi\right)^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu}\Phi\right) & \mathcal{O}_{B} &= \left(D_{\mu}\Phi\right)^{\dagger} \widehat{B}^{\mu\nu} \left(D_{\nu}\Phi\right) \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{WWW} &= \mathrm{Tr} \left[\widehat{W}^{\mu}_{\ \nu} \widehat{W}^{\nu}_{\ \rho} \widehat{W}^{\rho}_{\ \mu}\right] & \mathcal{O}_{\phi,2} &= \partial_{\mu} \left(\Phi^{\dagger}\Phi\right) \partial^{\mu} \left(\Phi^{\dagger}\Phi\right) \\ \mathcal{O}_{\widetilde{W}} &= \left(D_{\mu}\Phi\right)^{\dagger} \widetilde{W}^{\mu\nu} \left(D_{\nu}\Phi\right) & \mathcal{O}_{\widetilde{B}} &= \left(D_{\mu}\Phi\right)^{\dagger} \widetilde{B}^{\mu\nu} \left(D_{\nu}\Phi\right) \\ \mathcal{O}_{\widetilde{W}W} &= \Phi^{\dagger} \widetilde{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi & \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{\widetilde{W}WW} &= \mathrm{Tr} \left[\widetilde{W}^{\mu}_{\ \nu} \widehat{W}^{\nu}_{\ \rho} \widehat{W}^{\rho}_{\ \mu}\right] \end{split}$$

Modification of corresponding triple-gauge-coupling vertices:

	\mathcal{O}_{WWW}	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\phi,2}$	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\widetilde{W}}$	$\mathcal{O}_{\widetilde{B}}$	$\mathcal{O}_{\widetilde{W}W}$	$\mathcal{O}_{\widetilde{B}B}$
WWZ	Х	Х	Х				X	X	X		
$WW\gamma$	Х	Х	Х				Х	Х	х		
HWW		Х		Х		Х		Х		Х	
HZZ		Х	Х	Х	Х	Х		Х	х	Х	х
$HZ\gamma$		Х	Х	Х	Х	(X)		Х	х	Х	х
$H\gamma\gamma$				х	х	(X)				Х	х
WWWW	Х	Х					Х				
WWZZ	Х	Х					Х				
$WWZ\gamma$	Х	х					Х				
$WW\gamma\gamma$	Х						Х				

 $\left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right)$

Dimension-8

frame:M.Rauch

(D6 could be loop-induced \rightarrow D8 effects can become sizable [Arzt, Einhorn, Wudka])

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S,2} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

Bosonic dimension-8 operators

$$\mathcal{O}_{M,0} = \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right]$$
$$\mathcal{O}_{M,1} = \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right]$$
$$\mathcal{O}_{M,2} = \left[\widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right]$$
$$\mathcal{O}_{M,3} = \left[\widehat{B}_{\mu\nu}\widehat{B}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi\right]$$
$$\mathcal{O}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}D^{\mu}\Phi\right] \times \widehat{B}^{\beta\nu}$$
$$\mathcal{O}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi\right]$$

$$\begin{split} \mathcal{O}_{T,0} &= \mathrm{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \mathrm{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right] \\ \mathcal{O}_{T,1} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{T,2} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right] \\ \mathcal{O}_{T,5} &= \mathrm{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,6} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\mu\beta} \widehat{B}^{\alpha\nu} \\ \mathcal{O}_{T,7} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} \\ \mathcal{O}_{T,8} &= \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \widehat{B}_{\alpha\beta} \widehat{B}^{\alpha\beta} \\ \mathcal{O}_{T,9} &= \widehat{B}_{\alpha\mu} \widehat{B}^{\mu\beta} \widehat{B}_{\beta\nu} \widehat{B}^{\nu\alpha} \end{split}$$

[Eboli, Gonzalez-Garcia]

- \rightarrow each operators contains at least four bosons
- \Rightarrow leading contribution to quartic gauge coupling

T-matrix (VBFNLO) for $pp \rightarrow W^+W^+jj$

G. Perez

- Non-unitarized: Events for experimental bounds originate from unphysical prediction of EFT
- T-matrix: Factor 2 3 lower bounds for EFT couplings
- Unitarisation methods are important

Coupling (TeV ⁻⁴)	CMS (13 TeV)	New limits
f_{S_1}/Λ^4	[-21.6,21.8]	[-50.0,60.3]
f_{M_0}/Λ^4	[-8.7,9.1]	[-20.0,14.5]
f_{T_0}/Λ^4	[-0.62,0.65]	[-1.35,1.60]

- Non-unitarized: Events for experimental bounds originate from unphysical prediction of EFT
- T-matrix: Factor 2 3 lower bounds for EFT couplings
- Unitarisation methods are important