Top quark mass measurement with tt events with $J/\psi \rightarrow \mu\mu$ in final state

F. Derue, J. Zahreddine, LPNHE Paris

Study of tī pairs with a J/ ψ (b \rightarrow J/ $\psi \rightarrow \mu\mu$) in final state offer alternative methods to measure the top quark mass, using the strong correlation between m(top) and m(IJ/ ψ)

Given the low BR(~3×10⁻⁴) of this process, it could benefit from large stat. from HL-LHC HL/HE-LHC WG1 Meeting -- Top physics, 28th February 2018

Event selection

Select lepton $(e,\mu)+\geq 4$ jets + pairs of additional muons with opposite charged tracks

Signal :

• ttbar+st with a J/ψ

Background :

- combinatorial
- tt+J/ψ
- ttV, W/Z+jets, diboson
- NP and fake leptons

@8 TeV we selected ~600 such events
Analysis is ongoing @13 TeV

Strategy and Person power

Use correlation between m(top) and m(IJ/ ψ) : build templates on simulated data at different top quark masses. A "calibration curve" can relate the observed m(IJ/ ψ) on data to m(top).

Obtain detector (JES/JER, lepton etc.) and tt modelling (generator, fragmentation ...) uncertainties from simulation.

As $m(IJ/\psi)$ is obtained through leptons, expect $\sigma(JES/JER)$ to be reduced Can gain in precision through a combination with other methods/channels

<u>JHEP12(2016)123</u>

With similar stat CMS obtained $m(top)=173.5 \pm 3.0$ (stat) ± 0.9 (syst) GeV

@3000 fb-1 : $\sigma(\text{stat}) \sim 0.15$, will be dominated by systematic uncertainties (fragmentation, etc...)

Person power :

F. Derue (0.2 FTE), J. Zahreddine (>0.1 FTE – but qualification task ongoing)

- also involved in similar Run2 analysis

HL/HE-LHC WG1 Meeting -- Top physics, 28th February 2018