MITIGATION OF THE PROPAGATED DISCHARGES IN GEM STACKS BY HV SCHEME OPTIMIZATION

Piotr Gasik, Lukas Lautner

(TU Munich)

for the ALICE TPC Upgrade

RD51 Mini-Week
WG1, 20.02.2018

ALICE TPC UPGRADE IN NUMBERS

- Currently operated MWPC-chambers will be replaced with new, GEM-based detectors
- Mass production ongoing (see M. Ball's presentation later today) as well as:
- Commissioning and testing of the new chambers
- HV optimization

There is a lot to protect:

- 36x IROC, 36x OROC to be installed in LS2
- 144 quadruple stacks
- 576 GEMs
- 12000 GEM segments
- ${ }^{\sim} 5 \times 10^{9} \mathrm{GEM}$ holes
- 524160 FEE channels

GEM STACK

- All GEMs segmented on the top side; bottom side not segmented
- Reduce energy of discharges in GEMs
- All segments on a foil connected in parallel via R_{L} at each segment
- $R_{\mathrm{L}}=5 \mathrm{M} \Omega$

IROC

- 18 HV segments
- $<A>=92.5 \mathrm{~cm}^{2}$

OROC1

- 20 HV segments
- $\left\langle A>=86.9 \mathrm{~cm}^{2}\right.$

OROC2

- 22 HV segments
- $\left\langle A>=104.5 \mathrm{~cm}^{2}\right.$

OROC3

- 24 HV segments
- $\langle A\rangle=122.1 \mathrm{~cm}^{2}$

UPGRADED ALICE TPC

HV scheme

DISCHARGE PROPAGATION

DISCHARGE PROPAGATION

- Propagated/secondary discharge:
discharge in transfer or induction gaps triggered by a primary spark in GEM
- Amplitude of such a discharge about a factor 10 larger than primary one.
- Large signal can be associated with the development of a spark between GEM and GEM/padplane

- May be violent: risk of irreversible damage to the detector

DISCHARGE IN A SINGLE GEM HOLE

CATHODE

$\approx 1 \mathrm{~cm}$

3 mm

ANODE

CATHODE

G티

ANODE

SECONDARY DISCHARGE IN THE INDUCTION GAP

CATHODE

GEM
ANODE

CATHODE

GEM

ANODE

FACTS

- Observed at relatively low fields, much below amplification field:
- $\mathrm{E}_{\mathrm{\alpha}>0} \sim 5 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ne}-\mathrm{CO}_{2}-\mathrm{N}_{2}\right)$
- $\mathrm{E}_{\alpha>0} \sim 9 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ar}-\mathrm{CO}_{2}\right)$
- Field increase in the gap?
- Not confirmed by measurements with HV probes
- Foil bending excluded
- Propagation probability drops with increasing value of the resistor in series on the bottom side of GEM (!) (more recent results in backup)
- Relatively long time intervals between primary and propagated discharge (up to 50 us)
- Ion related?
- Shorter times measured in Ne-based mixtures (mobility)
- Measurements continue (CERN, TUM) Fruitful discussions with the GDD group.

FACTS

- Observed at relatively low fields, much below amplification field:
- $\mathrm{E}_{\mathrm{a}>0} \sim 5 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ne}-\mathrm{CO}_{2}-\mathrm{N}_{2}\right)$
- $\mathrm{E}_{\mathrm{a}>0} \sim 9 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ar}-\mathrm{CO}_{2}\right)$
- Field increase in the gap?
- Not confirmed by measurements with HV probes
- Foil bending excluded as a sufficient factor
- Propagation probability drops with increasing value of the resistor in series on the bottom side of GEM (!) (more recent results in backup)
- Relatively long time intervals between primary and propagated discharge (up to 50 us)
- Ion related?

- Shorter times measured in Ne-based mixtures (mobility)
- Measurements continue (CERN, TUM) Fruitful discussions with the GDD group.

FACTS

- Observed at relatively low fields, much below amplification field:
- $\mathrm{E}_{\mathrm{a}>0} \sim 5 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ne}-\mathrm{CO}_{2}-\mathrm{N}_{2}\right)$
- $\mathrm{E}_{\mathrm{a}>0} \sim 9 \mathrm{kV} / \mathrm{cm}\left(\mathrm{Ar}^{2} \mathrm{CO}_{2}\right)$
- Field increase in the gap?
- Not confirmed by measurements with HV probes
- Foil bending excluded as a sufficient factor
- Propagation probability drops with increasing value of the resistor in series on the bottom side of GEM (!) (more recent results in backup)
- Relatively long time intervals between primary and propagated discharge (up to 50 us)
- Ion related?
- Shorter times measured in Ne-based mixtures (mobility)
- Measurements continue (CERN, TUM)

Fruitful discussions with the GDD group.

- Hope to solve the puzzle soon!

HV SCHEME OPTIMIZATION

RC IN THE SYSTEM

- PS impedance
- $10 \mathrm{k} \Omega$ shunt in current meter connected to GEM4TOP channel
- $\quad \sim 10 \mathrm{nF}$ capacitance of a $\sim 80 \mathrm{~m}$ HV cable
- Decoupling resistor (1 per HV cable, top and bottom side)
- Decouple HV supply line form a GEM electrode
- Current choice: $100 \mathrm{k} \Omega$; acceptable potential drop
- $\quad \sim 100 \mathrm{pF}$ capacitance of $\mathrm{a} \sim 1 \mathrm{~m} \mathrm{HV}$ cable
- Loading resistors (top side of the foil)
- Quench a spark, reduce current, protect GEM segment
- Reduce current flowing from the PS in case of a short (allow for n shorts in a foil)
- Voltage (thus gain) drop due to the (ion/electron) current
- Final choice: $5 \mathrm{M} \Omega$ (for GEM1,2,3,4)
- PS impedance
- $10 \mathrm{k} \Omega$ shunt in current meter connected to GEM4TOP channel
- $\quad \sim 10 \mathrm{nF}$ capacitance of a $\sim 80 \mathrm{~m} \mathrm{HV}$ cable
- Decoupling resistor (1 per HV cable, top and bottom side)
- Decouple HV supply line form a GEM electrode
- Current choice: $100 \mathrm{k} \Omega$; acceptable potential drop
- $\quad \sim 100 \mathrm{pF}$ capacitance of a $\sim 1 \mathrm{~m}$ HV cable
- Loading resistors (top side of the foil)
- Quench a spark, reduce current, protect GEM segment
- Reduce current flowing from the PS in case of a short (allow for n shorts in a foil)
- Voltage (thus gain) drop due to the (ion/electron) current
- Final choice: $5 \mathrm{M} \Omega$ (for GEM1,2,3,4)

PARASITIC RC MEASUREMENTS IN Ar-CO $\mathbf{2}_{2}(\mathbf{9 0 - 1 0})$

- Propagation probability does not depend on the loading resistor value
- Nominal value $R_{\mathrm{L}}=5 \mathrm{M}$
- Extra capacitance (e.g. cable) between the top loading resistor and the top GEM electrode may influence the propagation behavior

PARASITIC RC MEASUREMENTS IN Ar-CO $\mathbf{2}_{2}(\mathbf{9 0 - 1 0})$

- Propagation probability does not depend on the loading resistor value
- Nominal value $R_{\mathrm{L}}=5 \mathrm{M}$

- Extra capacitance (e.g. cable) between the top loading resistor and the top GEM electrode may influence the propagation behavior
- Effect of an extra energy reservoir, causes substantial increase of GEM Bot voltage
\checkmark Loading resistors soldered directly at the GEM foil

PARASITIC RC MEASUREMENTS IN Ar-CO $\mathbf{2}_{2}(\mathbf{9 0 - 1 0})$

- Cable between bottom decoupling resistor and GEM

- Cable between a Power Supply and bottom decoupling resistor

PARASITIC RC MEASUREMENTS IN Ar-CO $\mathbf{2}_{2}(\mathbf{9 0 - 1 0})$

Cable between bottom decoupling resistor and GEM

- $R_{\mathrm{L}}=5 \mathrm{M} \Omega, R_{\text {dec, bot }}=200 \mathrm{k} \Omega$
- Propagation probability increases with the parasitic
capacitance (cable length) introduced between $R_{\text {bot }}$ and GEM
- Effect of the stored energy
- Necessary to install decoupling resistors close to the chambers

- Cable between a Power Supply and bottom decoupling resistor
- Effect of the decoupling resistor $\left(R_{\text {dec,bot }}=200 \mathrm{k} \Omega, R_{\mathrm{L}}=5 \mathrm{M} \Omega\right)$
- Cable length (between the PS and $R_{\text {dec,bot }}$) does not influence the propagation probability
\checkmark Decoupling resistor decouples long cables well

MEASUREMENTS IN Ne-CO $-\mathrm{N}_{2}\left(\mathrm{Ne}-\mathrm{CO}_{2}-\mathrm{N}_{2}\right)$

PARASITIC RC MEASUREMENTS IN Ne-CO $\mathbf{O}_{2}-\mathbf{N}_{2}$

- "Decoupling power" of $10 \mathrm{k} \Omega$ resistor rather poor, visible dependence on the cable length
- Situation improves with larger $R_{\text {dec,bot }}$
- With $\mathrm{R}_{\text {dec,bot }}>100 \mathrm{k} \Omega$ marginal dependency on the cable length
- Higher resistance clearly preferable

MITIGATION OF PROPAGATED DISCHARGES
 Summary

- Choose higher value of the decoupling resistance: $R_{\text {dec,bot }}=100 \mathrm{k} \Omega$
- Value of the resistor can be adjusted until final installation but also during the TPC operation
- HV settings with lower fields preferable (e.g. B-settings, $E_{\mathrm{T} 1,2, \mathrm{IND}}=3.5 \mathrm{kV} / \mathrm{cm}$)
- Minimize cable length between the $R_{\text {dec,bot }}$ and GEM ($\sim 2 \mathrm{~m}$)

TOP DECOUPLING RESISTOR VALUE - $R_{\text {dec,top }}$

For completeness...

- We keep value of the top decoupling resistor same as for the bottom side: $R_{\text {dec,top }}=100 \mathrm{k} \Omega$
- $R_{\text {dec,top }}>0$ needed to decouple HV power supply and 80 m cable from a GEM top electrode
- Otherwise PS connected directly 1.45 mm away from the active GEM area
- $R_{\text {dec,top }}<1 \mathrm{M}$
- Larger GEM4T and ET3 voltages variations with load oscillations
- Damping of the current oscillation amplitude in GEM4T current monitor

BACKUP

1. Primary discharge probability with 4-GEM readout chambers
2. Cascaded power supply response to a discharge

DISCHARGE PROBABILITY

DISCHARGE PROBABILITY

Influence of HV settings

- Different HV settings have been tested with a

3-GEM configuration

- "Standard" \rightarrow "IBF"
- Standard - optimized for stability (COMPASS)
- IBF \rightarrow optimized for IBF
- Significant drop of stability while using IBF settings with a typical 3-GEM configuration
- 4-GEM configuration, optimized for energy resolution and IBF is also stable against electrical discharges
- Measurements for HV settings similar to A

	S-S-S 'standard' HV $G=2000$	$\begin{gathered} \text { S-S-S-S } \\ I B=3.0 \% \\ \mathrm{G}=2000 \end{gathered}$	S-LP-LP-S			
			$\begin{aligned} I B & =0.34 \% \\ G & =1600 \end{aligned}$	$\begin{gathered} I B=0.34 \% \\ \mathrm{G}=3000 \end{gathered}$	$\begin{aligned} I B & =0.34 \% \\ \mathrm{G} & =5000 \end{aligned}$	$\begin{aligned} I B & =0.63 \% \\ \mathrm{G} & =2000 \end{aligned}$
	$\sim 10^{-10}$			$<2 \times 10^{-6}$	$<7.6 \times 10^{-7}$	
$\begin{aligned} & \hline{ }^{241} \mathrm{Am} \\ & \mathrm{E}_{\alpha}=5.5 \mathrm{MeV} \\ & \text { rate }=11 \mathrm{kHz} \end{aligned}$						$<1.5 \times 10^{-}$
$\begin{aligned} & { }^{239} \mathrm{Pu}+{ }^{241} \mathrm{Am}+{ }^{244} \mathrm{Cm} \\ & \mathrm{E}_{\alpha}=5.2+5.5+5.8 \mathrm{MeV} \\ & \text { rate }=600 \mathrm{~Hz} \end{aligned}$		$<2.7 \times 10^{-9}$	$<2.3 \times 10^{-9}$	$(3.1 \pm 0.8) \times 10^{-8}$		$<3.1 \times 10^{-9}$
$\begin{aligned} & \hline{ }^{90} \mathrm{Sr} \\ & \mathrm{E}_{\beta}<2.3 \mathrm{MeV} \\ & \text { rate }=60 \mathrm{kHz} \end{aligned}$					$<3 \times 10^{-12}$	25

DISCHARGE PROBABILITY

SPS, December 2014 (RD51 test beam)

- $150 \mathrm{GeV} / \mathrm{c}$ pion beam hitting Fe absorber
- $\quad \sim 5 \times 10^{11}$ particles accumulated
- Comparable to the number of particles expected in the TPC during a typical yearly $\mathrm{Pb}-\mathrm{Pb}$ run at a collision rate of 50 kHz (per GEM stack)
- HV settings comparable to "Settings B", gain = 2000
- Discharge probability: $(6 \pm 4) \times 10^{-12}$ per incoming hadron
- Estimate for Run 3:
- 650 discharges in the TPC per typical yearly $\mathrm{Pb}-\mathrm{Pb}$ run
- 5 per stack

DISCHARGE PROBABILITY

LHC, operation at P2

- Test IROCs and OROCs under radiation conditions that are comparable to Run 3
- IROC and OROC are placed in the miniframe, close to the beam pipe
- In 150 kHz pp, direct load on ROCs in this position is comparable to that on ROCs installed in the TPC in Run 3
- More on the ROC and CPS tests at P2 \rightarrow see talk by Robert Münzer

	Running time	Current spikes $(>500 \mathrm{nA})$	Spikes per Pb-Pb year $(\sim 200 \mathrm{~h})$ per stack
Settings A (100\%) Gain 2500	33h $17^{\prime} 55^{\prime \prime}$	30	180
Settings B (100%) Gain 2000	$504 \mathrm{~h} 46^{\prime} 08^{\prime \prime}$	7	3
Settings B (102\%) Gain ~ 4000	$25 \mathrm{~h} 37^{\prime} 19^{\prime \prime}$	7	55

- Settings with lower $\Delta \mathrm{V}_{\text {GEM4 }}$ and $\Delta \mathrm{V}_{\text {GEм3 }} / \Delta \mathrm{V}_{\text {GEM } 4}=1.0$ preferable (settings B)

CASCADED PS RESPONSE ON A DISCHARGE

PCB GEM SIMULATOR

ALICE

- 4GEM
- IROC equivalent
- $R_{\mathrm{L}}=5 \mathrm{M} \Omega$
- $R_{\text {dec }}=100 \mathrm{k} \Omega$
- Test Probes: 10:1, 100:1, 1000:1
- Readout via
2.2 nF decoupling C or directly at the HV line (1000:1 probe)
- Discharge/short:
relay - trip behavior
GDT - discharge behav.

CASCADED PS TESTS

ISEG prototype

- Check different tripping modes
- Don't turn the channel off
(voltage drops to maintain the current limit)
- Single channel trip after overcurrent detected
- With or w/o ramp-down, delay, etc.
- All channels turn off without ramp after overcurrent detected (ISEG feature)

CASCADED PS TESTS

Single channel reaction settings

- Possible small overvoltage $\mathcal{O}(\mathrm{V})$ in a discharge moment (for other-than-discharging GEM)
- No reaction of other channels (unless due to capacitive coupling, few volts)
- All CPS reactions on >1 ms scale, (longer than the discharge/propagation time-scale)
- All reactions safe for GEMs

CASCADED PS TESTS

All channels turned off without ramp (ISEG feature)

- All electrodes discharge to ground with a long time constant (RC ~2s, no direct connection to GND)
- All channels trip together within 1 ms
- Overvoltage during a trip excluded or marginal
- No dependency of the PS reaction on the $I_{\text {limit }}$ found

TESTING CAEN CPS

- CAEN Cascade power supply: second release, current resolution 100 pA
- Crate SY5527LC + GECO program to control and monitor the PS
- Triple GEM stack, $10 \times 10 \mathrm{~cm} 2$ (from RD51), $70 \% \mathrm{Ar}+30 \% \mathrm{CO} 2$
- Resistor $470 \mathrm{k} \Omega$ on the top and $10 \mathrm{k} \Omega$ on the bottom of each GEM (time before final choice was made)
- Reaction on an overcurrent: ramp channel(s) down. No overvoltage measured.
- No possibility to turn all channels off without ramp

SUMMARY II

- Discharge probability for the nominal S-LP-LP-S solution compatible with the wellestablished, safe settings for the 3-GEM trackers
- Safe HV scheme identified to minimize the effects of a spark in a GEM and mitigate the risk of a discharge propagation:
- Top side of a GEM foil segmented
- $R_{\mathrm{L}}=5 \mathrm{M} \Omega$ soldered directly at the GEM segment
- Decoupling resistors $R_{\text {dec,bot }}=R_{\text {dec,top }}=100 \mathrm{k} \Omega$
- Decoupling resistors need to be installed close to the chambers
- CPS reaction on a discharge event safe for the foils in a GEM stack

BACKUP SLIDES

IROC SEGMENTATION

18 HV segments on one side

(opposite side not segmented)

- Reduce energy of discharges
- Connected in parallel via R_{L} at each segment

Average area: $92.5 \mathrm{~cm}^{2}$

Follows the padplane layout
Pad size: $7.5 \times 4 \mathrm{~mm}^{2}$
Segment boundaries overlap with pad-row boundaries

6 pad rows	$96.4 \mathrm{~cm}^{2}$
6 pad rows	$92.4 \mathrm{~cm}^{2}$
6 pad rows	$88.8 \mathrm{~cm}^{2}$
6 pad rows	$85.3 \mathrm{~cm}^{2}$
7 pad rows	$95.2 \mathrm{~cm}^{2}$
7 pad rows	$90.3 \mathrm{~cm}^{2}$
8 pad rows	$97.4 \mathrm{~cm}^{2}$
8 pad rows	$91.1 \mathrm{~cm}^{2}$
9 pad rows	$95.3 \mathrm{~cm}^{2}$

- OROC3

24 segments
<A> = $122.1 \mathrm{~cm}^{2}$
Pad: $15 \times 6 \mathrm{~mm}^{2}$

- OROC2

22 segments
<A> $=104.5 \mathrm{~cm}^{2}$
Pad: $=12 \times 6 \mathrm{~mm}^{2}$

- OROC1

20 segments
<A> $=86.9 \mathrm{~cm}^{2}$
Pad: $=10 \times 6 \mathrm{~mm}^{2}$

- Opposite sides not segmented
- Segmentation follows the padplane layout.

2 pad rows	$138.9 \mathrm{~cm}^{2}$
2 pad rows	$123.6 \mathrm{~cm}^{2}$
2 pad rows	$122.0 \mathrm{~cm}^{2}$
2 pad rows	$120.5 \mathrm{~cm}^{2}$
2 pad rows	$118.9 \mathrm{~cm}^{2}$
2 pad rows	$117.3 \mathrm{~cm}^{2}$
2 pad rows	$115.7 \mathrm{~cm}^{2}$
2 pad rows	$114.1 \mathrm{~cm}^{2}$
2 pad rows	$112.6 \mathrm{~cm}^{2}$
2 pad rows	$111.0 \mathrm{~cm}^{2}$
2 pad rows	$109.4 \mathrm{~cm}^{2}$
3 pad rows	$161.9 \mathrm{~cm}^{2}$
2 pad rows	$83.8 \mathrm{~cm}^{2}$
2 pad rows	$82.5 \mathrm{~cm}^{2}$
2 pad rows	$81.5 \mathrm{~cm}^{2}$
3 pad rows	$120.7 \mathrm{~cm}^{2}$
3 pad rows	$118.4 \mathrm{~cm}^{2}$
3 pad rows	$116.1 \mathrm{~cm}^{2}$
3 pad rows	$113.8 \mathrm{~cm}^{2}$
3 pad rows	$111.6 \mathrm{~cm}^{2}$
3 pad rows	$109.3 \mathrm{~cm}^{2}$
3 pad rows	$107.0 \mathrm{~cm}^{2}$
3 pad rows	$105.0 \mathrm{~cm}^{2}$
3 pad rows	$84.6 \mathrm{~cm}^{2}$
3 pad rows	$82.8 \mathrm{~cm}^{2}$
3 pad rows	$81.2 \mathrm{~cm}^{2}$
3 pad rows	$79.2 \mathrm{~cm}^{2}$
3 pad rows	$78.0 \mathrm{~cm}^{2}$
3 pad rows	$76.5 \mathrm{~cm}^{2}$
4 pad rows	$99.7 \mathrm{~cm}^{2}$
4 pad rows	$96.9 \mathrm{~cm}^{2}$
4 pad rows	$94.1 \mathrm{~cm}^{2}$
4 pad rows	$96.0 \mathrm{~cm}^{2}$

PS TEST WITH THE GEM-PCB SIMULATOR

TRIP CHARACTERISTICS

ISEG EHS 8060n - independent channels PS

- After simultaneous trip, particular foil discharges to 0 properly with a proper HV scheme (resistors to ground for each electrode)
- There are significant time delays between trips of subsequent channels
- Global trip $\sim 150 \mathrm{~ms}$ (up to 1000 ms) later than the first trip of sparking channel
- In sparking channel, usually top and bottom side trips simultaneously, if current limits OK
- Trip in one channel may induce faster trip in another one
- Wrong current limits may result in increase of GEM voltages!

ALL CHANNELS TO GROUND

- Long discharge time
- RC~2 s (but GEM1)
- ET3 increases first
- Slow discharge time due to non-direct grounding of the electrodes

TURN ALL CHANNELS OFF WITHOUT RAMP

Internal delay time

V Turn the channel off when reaching this current. Turn off after:
Channel Configuration

- Turn channel off with ramp

Turn channel off without ramp

- Turn all channels off without ramp

Note: Delayed Trip is only available in mode Kill Disable. Note: The Voltage Ramp Speed will be limited to 1% when Delayed Trip is enabled.

OK

- No "software" delay (0 ms)
- Hardware delay $\sim 20 \mathrm{~ms}$
- Reaction time >> discharge time

TURN ALL CHANNELS OFF WITHOUT RAMP

Trip delays between channels

when Delayed Trip is enabled.

- All channels react (trip) within 0.0-1.5 ms
- Different slopes in the first moments may spoil the exact start-time location
- Different primary slopes \rightarrow RC related, observed same differences many times.
- Same when tripping with different $\mathbf{I}_{\text {limit }}$ and trip delay settings
- GEM3T start tripping with a slight voltage increase
- Voltage to GND after ~3 ms
- Related to low $\mathrm{E}_{\mathrm{T} 3}$, voltage drop across $R_{\mathrm{dec}}=100 \mathrm{k}$
- Not observed with higher $\mathrm{E}_{\mathrm{T} 3}$

TURN ALL CHANNELS OFF WITHOUT RAMP

Search for an overvoltage -discharge moment

- GEM2 relay "discharge"

Caliz Set Current Trip

- Realistic signal amplitudes in all channels
- Possible slight overvoltage in GEM1 ($\sim 2 \mathrm{~V}$ for ~ 10 us)?
- Confirmed with SPICE; low amplitude signal on GEM1T due to reading out "full" foil
- In reality, overvoltage negligible
- Natural reaction of the system, not related to the CPS

TURN ALL CHANNELS OFF WITHOUT RAMP

Search for an overvoltage - foil discharge time constants

Cil Set Current Trip
$8 x$

- Tripping channels studied with

- 10:1 test probes via 2.2 nF capacitor (yellow/blue)
- 1000:1 probes connected directly to a GEM-segment capacitor
- Tripping channel connected via 80 m cables, all resistors in place
- Discharging RC ~2s
- No sign of an overvoltage on a large time scale $\mathcal{O}(\mathrm{s})$
- In first 50 ms of a trip, discharging speed may be higher for $\mathrm{GEM}_{\text {Bot }}$ which does not translate to an overvoltage

TESTING CAEN CPS

- The discharge was induced by the increase of the voltage on the top of GEM 3
- The oscilloscope was triggered with the signal from the readout plane
- We monitor the voltage on the top of each GEM

- Another case where we induced the discharge by increasing the voltage on the top of GEM 2

- Large variations in the current read in CAEN PS compare to Keithley Nevertheless the measured values are similar
- From the discharge studies the oscillations observed on the voltage are related with the current generation mode of the power supply, which works to keep the voltage under control
- In this module it is not possible kill the voltage once the power supply trip - this will be possible on the next version of the power supply

GEM4 RESISTORS

Voltage drops and \#shorts

CASCADED PS

*Load currents were scaled according to active are of GEM4

$\begin{gathered} \mathbf{R}_{\mathrm{L}} \\ (\mathrm{M} \mathbf{\Omega}) \end{gathered}$	$\Delta \mathrm{U}_{\text {GEM4 }}($ Nominal $)-\Delta \mathrm{U}_{\text {GEM4 }}($ Load $) ~[V] ~$								
	0 shorts			1 short*	2 shorts	3 shorts	4 shorts	5 shorts	6 shorts
	10k	50k	100k	10k	10k	10k	10k	10k	10k
1	1.5	2.3	3.2	12.0	22.0	-	-	-	-
1.5	2.1	2.9	3.8	9.2	16.0	22.5	28.8	-	-
2.0	2.8	3.5	4.4	8.1	13.3	18.3		27.9	-
2.5	3.4	4.1	5.0	7.7	11.8	15.9			27.6
3.0	4.0	4.8	5.6	7.6	11.1	14.5			
4.0	5.3	6.0	6.9	7.9	10.6	13.2			
5.0	6.5	7.2	8.1	8.7	10.8	12.9			

- Voltage drops can be compensated by increasing $U_{\text {GEM }}(\sim 390 \mathrm{~V}$ in case of $4,5,6, \ldots$ shorts, max 400V)
- Number of shorts given by 1 mA maximum current of the PS channel

$$
\text { (no. Shorts * } 359 \mathrm{~V}) / \mathrm{R}_{\mathrm{L}}<1 \mathrm{~mA}
$$

- test Cascaded PS with shorts and increased currents...performance the same?

0.5 mA RC

*Load currents were scaled according to active are of GEM4

$\begin{gathered} \mathbf{R}_{\mathrm{L}} \\ (\mathrm{M} \mathbf{\Omega}) \end{gathered}$	$\Delta \mathrm{U}_{\text {GEM4 }}($ Nominal $)-\Delta \mathrm{U}_{\text {GEM4 }}($ Load $) ~[V] ~$								
	0 shorts			1 short*	2 shorts	3 shorts	4 shorts	5 shorts	6 shorts
	10k	50k	100k	10k	10k	10k	10k	10k	10k
1	11.5	12.3	13.2	150.6	-	-	-	-	-
1.5	12.2	12.9	13.8	119.0	175	-	-	-	-
2.0	12.8	13.6	14.4	99.5	151	-	-	-	-
2.5	13.5	14.2	15.1	86.3	134	167	-	-	-
3.0	14.1	14.8	15.7	77.0	120	151	177	-	-
4.0	15.3	16.0	16.9	64.6	101	129	153	172	-
5.0	16.6	17.3	18.2	57.1	89	114	136	154	170

- Decoupling resistor value may depend on where do we plan to put the RC (more SPICE + stability)
- All voltages affected \rightarrow have to consider all 4+4 fields! (Today only GEM4 voltages considered)
- With a single short, GEM4 is affected substantially, additional resistance in series can compensate although not immediately (access or smart RC deisgn)
- \quad No compensation possible if $R /($ no. shorts $)<R_{G E M 4}$

1.0 mA RC (COMPASS-LIKE)

*Load currents were scaled according to active are of GEM4

$\begin{gathered} R_{\mathrm{L}} \\ (\mathrm{M} \mathbf{\Omega}) \end{gathered}$	$\Delta \mathrm{U}_{\text {GEM4 }}($ Nominal $)-\Delta \mathrm{U}_{\text {GEM4 }}($ Load $) ~[V] ~$								
	0 shorts			1 short*	2 shorts	3 shorts	4 shorts	5 shorts	6 shorts
	10k	50k	100k	10k	10k	10k	10k	10k	10k
1	6.5	7.2	8.1	96.5	149	-	-	-	-
1.5	7.1	7.9	8.8	72.0	117	150	-	-	-
2.0	7.8	8.5	9.4	59.0	97	127	150	170	-
2.5	8.4	9.1	10.0	50.0	84	110	132	151	167
3.0	9.0	9.7	10.6	44.6	74	98	119	136	152
4.0	10.3	11.0	11.9	37.8	61	82	99	115	131
5.0	11.5	12.2	13.1	33.6	53	71	86	101	113

- All voltages affected \rightarrow have to consider all 4+4 fields! (Today only GEM4 voltages considered)
- With a single short, GEM4 is affected substantially, additional resistance in series can compensate although not immediately (access or smart RC deisgn)
- No compensation possible if $R_{J} /($ no. shorts $)<R_{\text {GEM }}$

2.0 mA RC

*Load currents were scaled according to active are of GEM4

$\begin{gathered} R_{\mathrm{L}} \\ (\mathrm{M} \mathbf{\Omega}) \end{gathered}$	$\Delta \mathrm{U}_{\text {GEM4 }}($ Nominal $)-\Delta \mathrm{U}_{\text {GEM4 }}($ Load $) ~[V] ~$								
	0 shorts			1 short*	2 shorts	3 shorts	4 shorts	5 shorts	6 shorts
	10k	50k	100k	10k	10k	10k	10k	10k	10k
1	4.0	4.7	5.6	58.0	98	129	153	173	-
1.5	4.6	5.3	6.2	42.4	73	98	120	137	154
2.0	5.2	5.9	6.8	34.3	59	81	99	115	130
2.5	5.8	6.6	7.5	29.6	50	68	84	100	113
3.0	6.5	7.2	8.1	26.2	44	60	75	88	101
4.0	7.7	8.4	9.3	22.8	37	49	61	72	83
5.0	9.0	9.7	10.6	20.8	32	43	53	63	72

- All voltages affected \rightarrow have to consider all 4+4 fields! (Today only GEM4 voltages considered)
- With a single short, GEM4 is affected substantially, additional resistance in series can compensate although not immediately (access or smart RC deisgn)
- No compensation possible if $R_{J} /($ no. shorts $)<R_{\text {GEM }}$

SUMMARY TABLE: R_{L} @ GEM4

$\begin{gathered} R_{\mathrm{L}} \\ (\mathrm{M} \Omega) \end{gathered}$	0.5 mA RC			1.0 mA RC			2.0 mA RC			CASCADED		
	10k	100k	\#shorts									
1.0	11.5	13.2	1	6.5	8.1	2	4.0	5.6	5	1.5	3.2	2
1.5	12.2	13.8	2	7.1	8.8	4	4.6	6.2	8	2.1	3.8	4
2.0	12.8	14.4	2	7.8	9.4	5	5.2	6.8	11	2.8	4.4	6
2.5	13.5	15.1	3	8.4	10.0	6	5.8	7.5	13	3.4	5.0	6
3.0	14.1	15.7	4	9.0	10.6	8	6.5	8.1	16	4.0	5.6	8
4.0	15.3	16.9	5	10.3	11.9	11	7.7	9.3	22	5.3	6.9	11
5.0	16.6	18.2	6	11.5	13.1	13	9.0	10.6	27	6.5	8.1	13

SUMMARY TABLE (AVERAGE)

DAMPING EFFICIENCY

DAMPING EFFICIENCY

