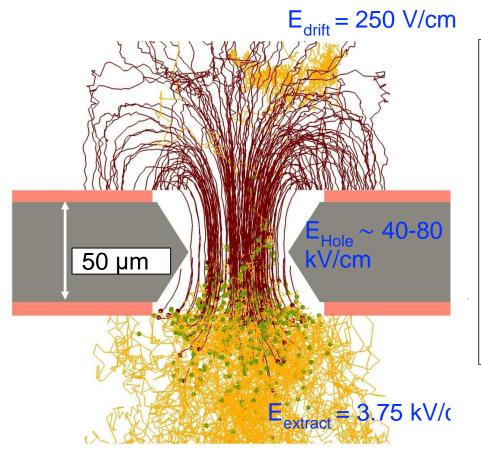
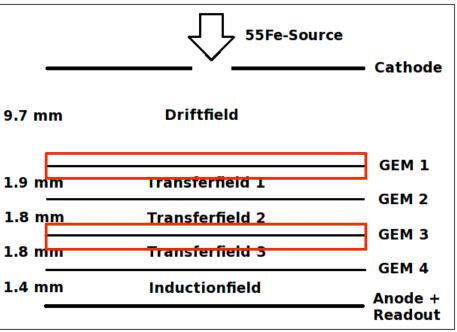


Status of the ALICE TPC upgrade Markus Ball Rheinische Friedrich-Wilhelms Universität Bonn Helmholtz-Institut für Strahlen- und Kernphysik (HISKP)

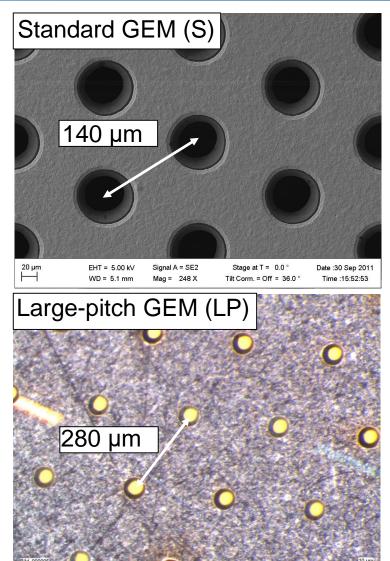
RD51 Mini-Week, CERN Geneve




- Motivation for the GEM upgrade
- Ion backflow, energy resolution and discharge probability
- Full production
 - GEM Production and QA
 - Framing
 - Chamber assembly
- Summary

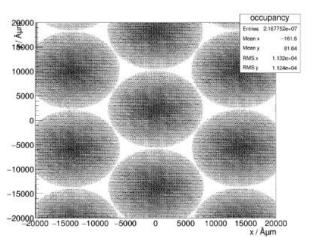
Ion Backflow Suppression

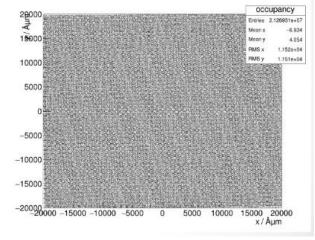
Ion Backflow suppression of a GEM ~ 10^{-1} for a single GEM ~ 10^{-2} - 10^{-3} for a GEM stack


Asymmetric field configuration can be repeated in a GEM stack ! $E_{drift} < E_{T1}, E_{T2} < E_{T3}$ $\Delta U_{G1} < \Delta U_{G2} < \Delta U_{G3} < \Delta U_{G4}$

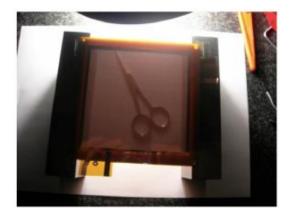
RD51 Mini-Week, CERN Geneve

Properties of a GEM foil


- Requirements could not be fulfilled with a triple GEM (S-S-S) setup
- New readout chambers employ standard pitch (S) and large pitch GEM foils in a S-LP-LP-S configuration
- HV configuration has to be optimal for ion back flow, energy resolution and low discharge probability at the same time



Foils rotated 1°



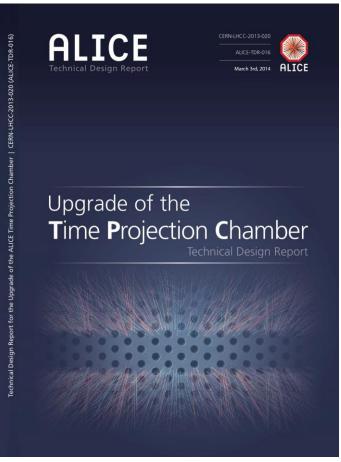
Foils rotated 90° to each other

Foils not rotated

Foils rotated 90° to each other

Alignment of the GEM foils

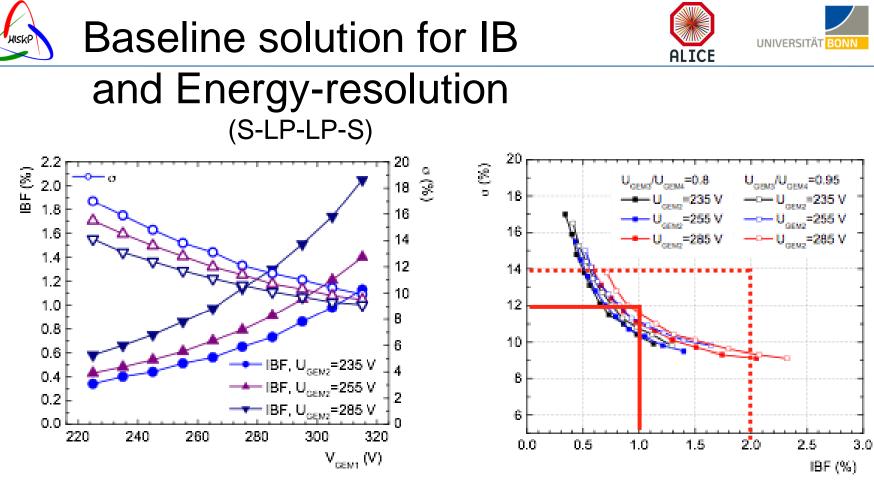
- Alignment between the GEMs crucial → uniform IB
- Rotation makes the S, LP foils unique (G1 ≠ G4, G2 ≠ G3
- ► To decrease the IB further
 than with the IB optimised electric field configuration
 → use GEM foils with different geometries (different optical transparencies)



- Motivation for the GEM upgrade
- Ion backflow, energy resolution and discharge probability
- Full production
 - GEM Production
 - Framing
 - Chamber assembly
- Summary

Upgrade TDR of the ALICE TPC

CERN-LHCC-2013-020 Addendum: CERN-LHCC-2015-002


RD51 Mini-Week, CERN Geneve

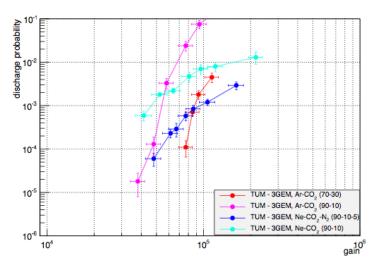
Requirements for the upgrade GEM based TPC of ALICE

- Drift field: 0.4 kV/cm
- Detector gas: Ne-CO₂-N₂ (90-10-5)
- Effective gas gain: 2000
- ► S/N ratio ~ 20
- ► IB: <1%
- ► ε: < 20</p>
- ► σ/E (5.9 keV): < 12 %</p>
- Low discharge probability
- Operation at 50 kHz (Pb-Pb)

Ion Backflow IB := Ratio of I_{Cath} / I_{Anode}

Number of back drifting ions / e_{prim} $\epsilon := IB^*gain - 1$

Optimisation of two parameters at the same time is conflicting:


- Best Value IB ~ 0.6 % at an energy resolution of σ/E < 12 %
- Upgrade goals have been reached with some margin for fine tuning (in case needed for the stability)
- Much larger phase space has been scanned no significant improvements (no order of magnitude) are expected

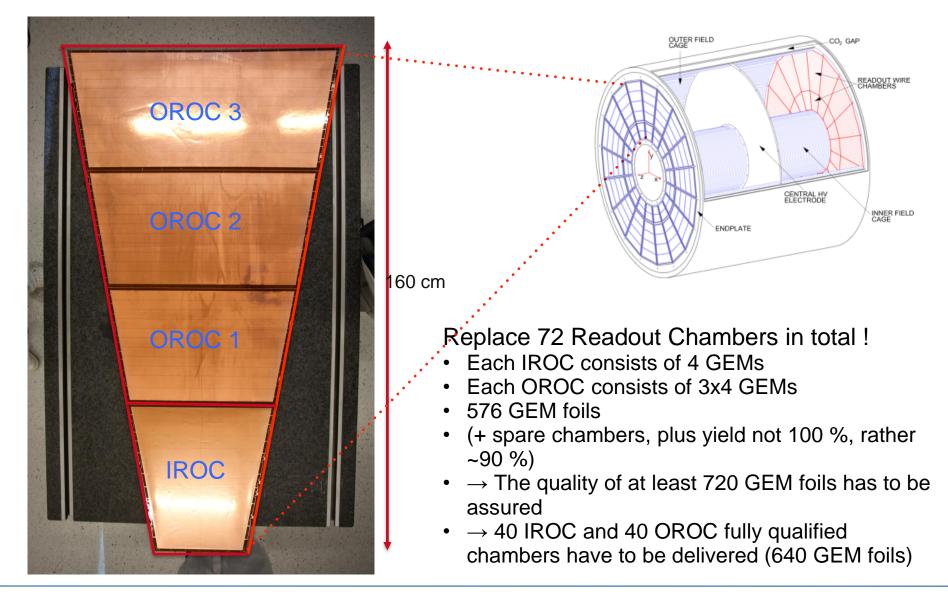
Discharge Probability (S-LP-LP-S)

•

Stable operation under LHC conditions

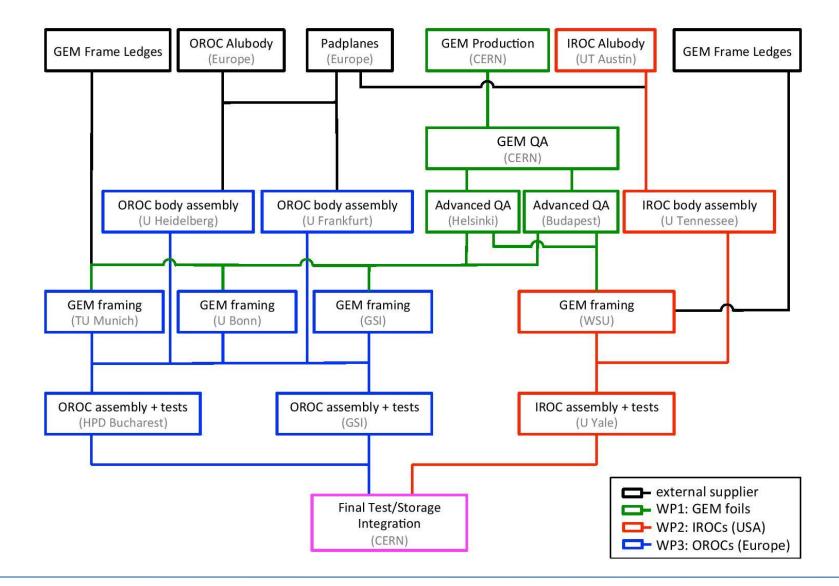
- Discharge probability studies (TUM, CERN):
 - < 10⁻¹⁰ (4GEM, measured with alpha particles)
 - $(6 \pm 4) \times 10^{-12}$ (hadron beam at the SPS)
- Discharge propagation studies
- HV system stability (CERN, IKF, TUM)
 - Charge density studies (see P. Gasik, A. Mathis, L. Fabbietti, J. Margutti NIM A870 (2017) 116)
- See presentation of P. Gasik

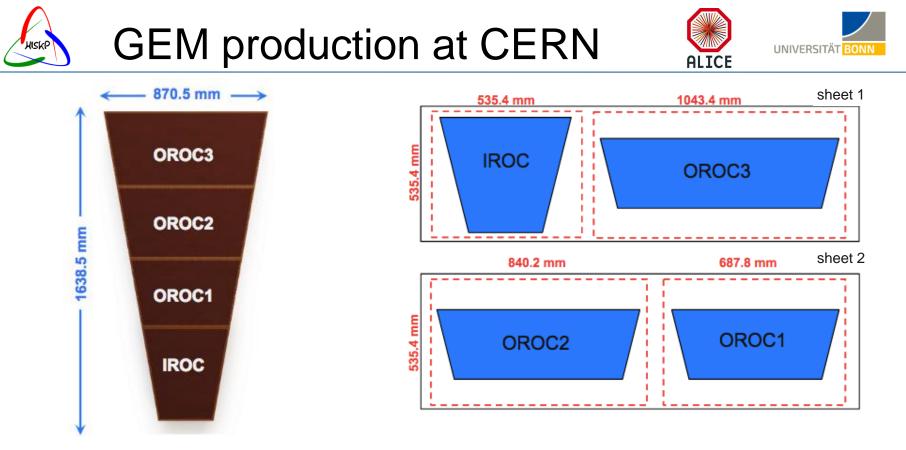
	S-S-S	S-S-S-S		S-LP-LI	P-S	
	'standard' HV G = 2000	IB = 2.0% G = 2000	IB = 0.34% G = 1600	IB = 0.34% G = 3000	IB = 0.34% G = 5000	IB = 0.63% G = 2000
E_{α}^{220} Rn E _{α} = 6.4 MeV rate = 0.2 Hz	~10 ⁻¹⁰			$<\!2\! imes\!10^{-6}$	$< 7.6 \times 10^{-7}$	
E_{α}^{241} Am $E_{\alpha} = 5.5 \text{ MeV}$ rate = 11 kHz						< 1.5×10 ⁻¹⁰
$\begin{array}{l} ^{239}\text{Pu} + ^{241}\text{Am} + ^{244}\text{Cm} \\ \text{E}_{\alpha} = 5.2 + 5.5 + 5.8 \text{MeV} \\ \text{rate} = 600 \text{Hz} \end{array}$		$< 2.7 \times 10^{-9}$	$< 2.3 \times 10^{-9}$	$(3.1\pm 0.8)\times 10^{-8}$		< 3.1×10 ⁻⁵
90 Sr E _{β} < 2.3 MeV rate = 60 kHz					$< 3 \times 10^{-12}$	


- Motivation for the GEM upgrade
- Ion backflow, energy resolution and discharge probability

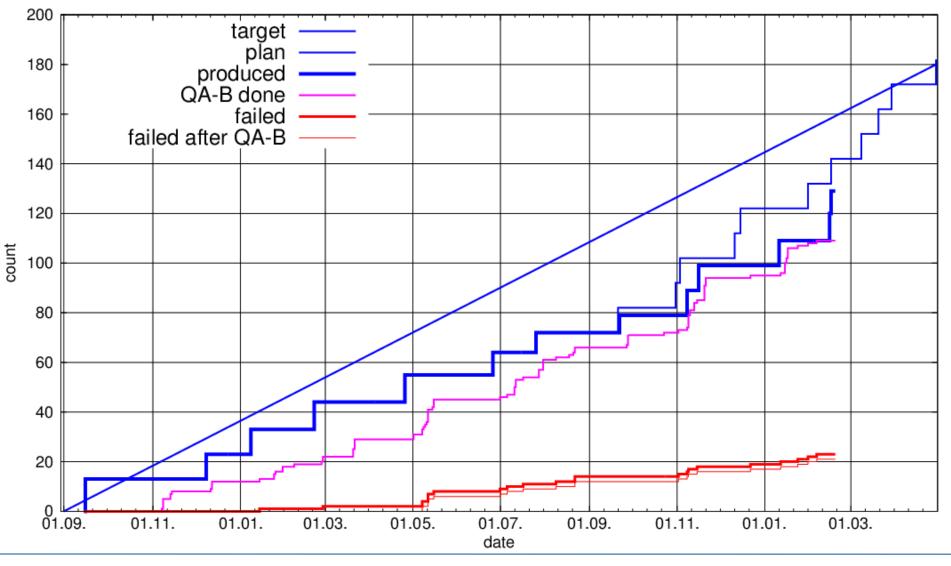
Full production

- GEM Production
- Framing
- Chamber assembly
- Summary




 R&D and Prototyping 	2012-2015
LHCC approval (TDR, TDR Addendum, TDR Addendum UCG)	June 2015
 Engineering design Review (EDR) 	November 2015
 Training (School of ROCs, Visits at all institutes, etc.) 	
GEM and chamber final design review	June 2016
Pre-production:	finalized
 Production Readiness Review (PRR) 	10 th March 2017
 - full characterization of the final-design (aka PRR) chambers 	
 Mass production (40x IROCs + 40x OROCs) 	Q2.2017 – Q3.2018
 ROC tests at LHC 	Q2.2017 – Q3.2018

RD51 Mini-Week, CERN Geneve



- GEM production at CERN
 - 144 GEMs of each type: IROC, OROC 1, 2, 3
 - 720 individual GEMs (including 10 % spares) = 2 x 180 sheets (IROC + OROC3, OROC1 + OROC2)
 - Each type has 4 flavours (G1, G2, G3, G4), which are unique

GEM cumulative production chart IROC, status 2018-02-18

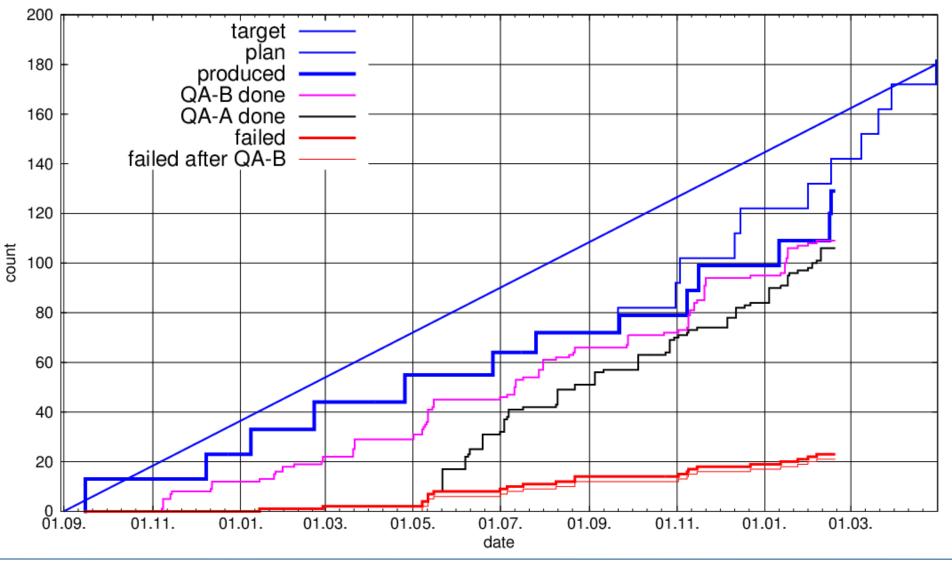
RD51 Mini-Week, CERN Geneve

GEM Production Progress

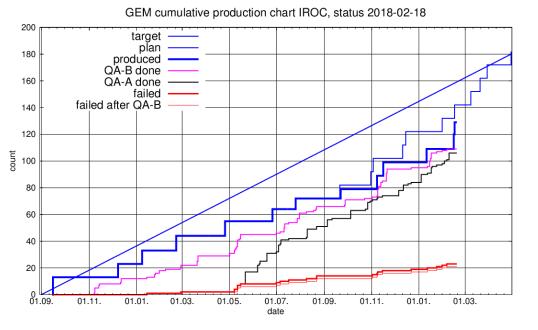
ROC GEM Foils	Total (produced)	QA-B done	QA-B passed	failed	failed (w/o 5)	Sliding Yield	Sliding Yield (w/o 5)
IROC	129	109	88	23	17	0.807	0.844
OROC1	124	124	107	17	13	0.863	0.895
OROC2	115	115	107	8	5	0.930	0.957
OROC3	132	111	94	17	15	0.847	0.865
Total	500	459	396	65	50	0.863	0.891

- February 2018: 500 foils produced (target: 720 = 640+80 spares)
- GEM production: Original end of production was planned end of april, now in may
- Projected yield: ~ 90% (constantly monitored)
- Yield might be too tight \rightarrow 720 produced GEM foils might not be sufficient to finish ROC production
- * 80 GEM foils on top of the 720 \rightarrow 800 (need 640 GEMs for 40+40 ROCs)
- Very powerful database system is in place
- Keeps track of all GEMs, components and QA results

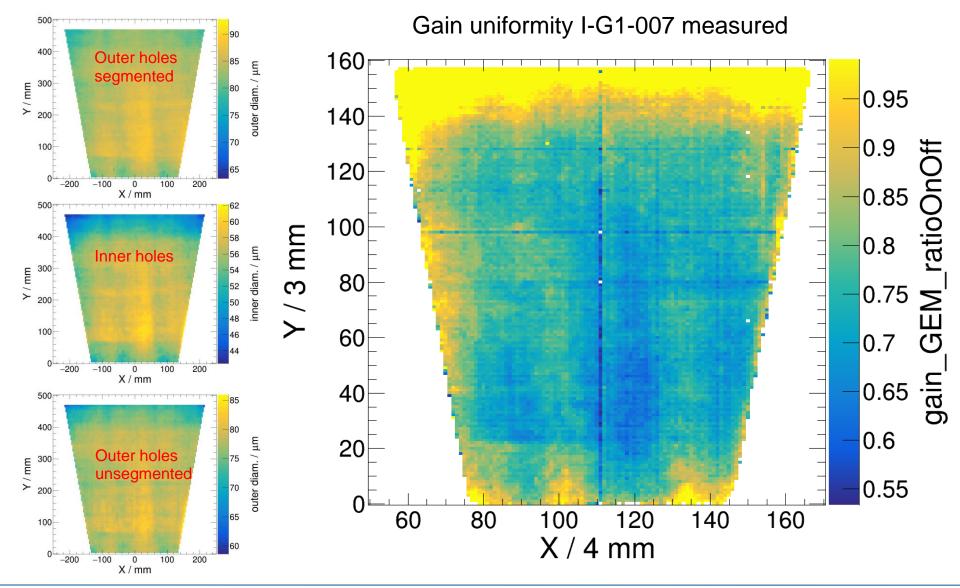
GEM Production Progress


2018-02-15		į	IROC	3			C	ROC	21			0	ROC	2			C	ROC	:3	
flavor	G1	G2	G3	G4	sum	G1	G2	G3	G4	sum	G1	G2	G3	G4	sum	G1	G2	G3	G4	sum
QA-B done	30	30	29	31	120	34	30	31	29	124	29	31	30	26	116	32	29	27	33	121
produced	30	27	27	25	109	34	30	31	29	124	28	31	30	26	115	29	25	26	31	111
QA-B passed	20	25	25	16	86	29	25	26	27	107	25	30	30	23	108	23	21	24	26	94
QA-B yield	0.67	0.93	0.93	0.64	0.79	0.85	0.83	0.84	0.93	0.86	0.89	0.97	1.00	0.88	0.94	0.79	0.84	0.92	0.84	0.85
QA-A done	29	25	24	24	102	30	27	29	25	111	26	27	24	23	100	26	20	24	26	96
QA-A passed	19	23	22	15	79	25	22	24	23	94	23	26	24	20	93	20	16	22	21	79
QA-A yield	0.66	0.92	0.92	0.62	0.77	0.83	0.81	0.83	0.92	0.85	0.88	0.96	1.00	0.87	0.93	0.77	0.80	0.92	0.81	0.82
framed, ok	18	20	21	15	74	21	21	23	22	87	22	23	23	19	87	16	17	19	18	70

- GEM flavours are unique G1, G4 (S) and G2, G3 (LP) can not be exchanged (rotation)
- Lowest number of GEM flavours defines the number of chambers, that can be build
- Information from database and personal communication helps to equalize the flavours.
- Close contact to CERN PCB workshop allows to react on the flavor mismatch from batch to batch
- Keeping track of all GEM flavours is crucial

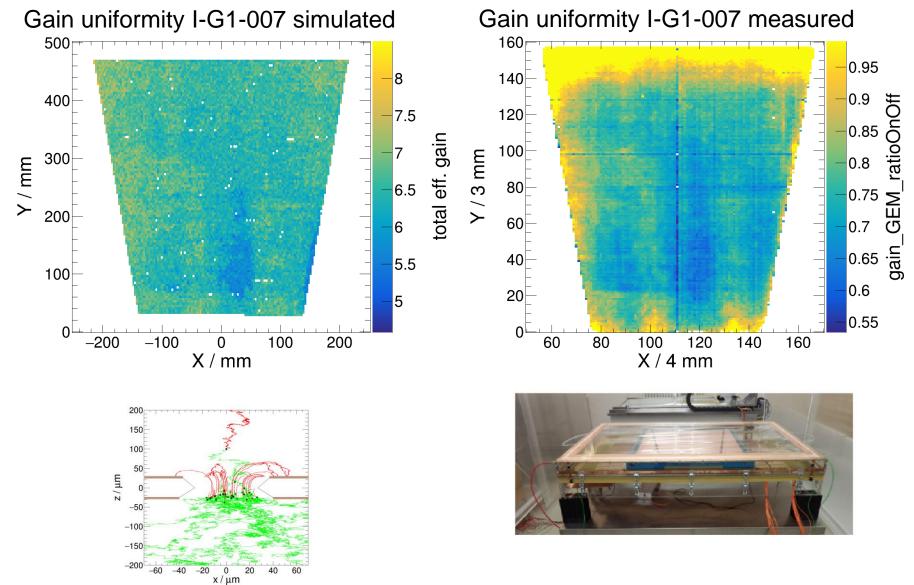

GEM cumulative production chart IROC, status 2018-02-18

RD51 Mini-Week, CERN Geneve



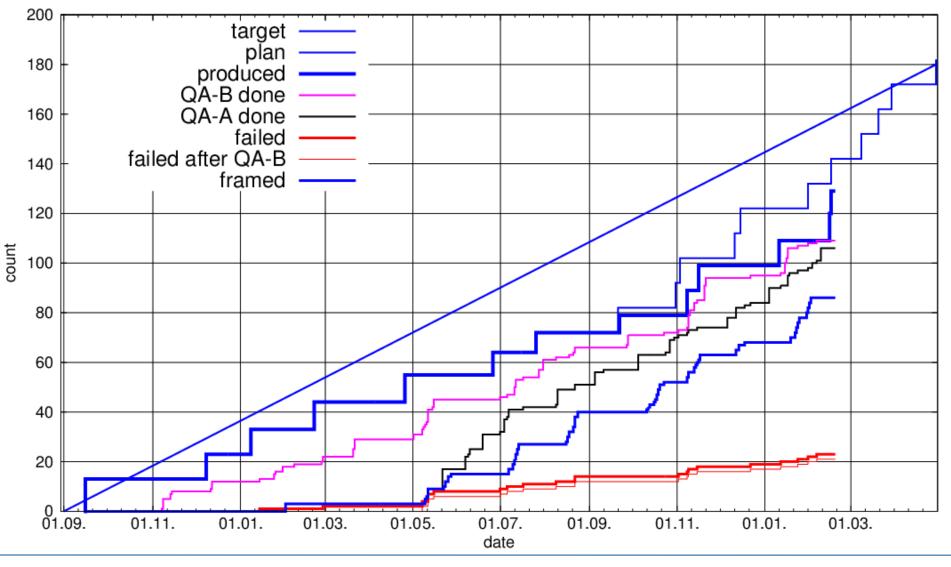
Traffic Light					
IROC	48	25	6	23	102
OROC1	28	56	10	17	111
OROC2	45	26	9	8	88
OROC3	20	50	9	17	96
Total	141	157	34	65	397

- February 2018: ~ 400 foils tested for Advanced
 QA, ~ 86 % of all GEM tested at CERN
- Advanced QA consists of
- high definition optical scan,
- · Small part of GEM foils test gain uniformity
- long term leakage current measurement
- Classification according an extended traffic light system
- So far all GEM foils except Red are used
- Connect performance of single GEMs and chamber gain uniformity (ongoing), see next slides

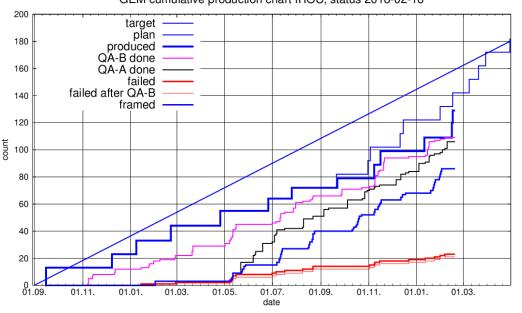


RD51 Mini-Week, CERN Geneve

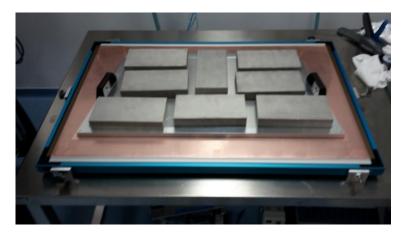
GEM Production Progress


RD51 Mini-Week, CERN Geneve

hiskp

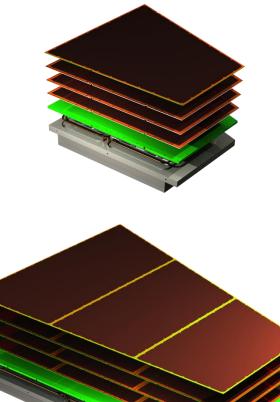

GEM cumulative production chart IROC, status 2018-02-18

RD51 Mini-Week, CERN Geneve



GEM cumulative production chart IROC, status 2018-02-18

- February 2018: ~ 340 GEM foils glued on frame
- For all GEM foils *I*_{Leak} has been measured twice (before and after framing glueing)
- ~ 74 % of all GEMs tested at CERN already glued to a GEM frame
- Quality of the glueing procedure constantly monitored at the framing and the assembly centres (feedback to the framing centres)
- Also GEM framing enters in the database


Production of 40x IROCs and 40x OROCs chambers is ongoing

- Almost all components in hand
- GEM production continues until May 2018
- All chambers assembled until Q4.2018

ROC components	Needed	Produced	Fraction (%)
Al-bodies	80	65	81
Padplanes	160	160	100
FEC connectors	15'000	15'000	100
HV cables	1'300	1'300	100
GEMs*	720 (10% spares)	500	69
GEM frames**	640	590	92

* PCB workshop will continue GEM production, if needed (manpower booked) ** Extra spare frames ordered recently

Goal	Assembled	Fraction (%)
40/40	21/15	45
40/120	40/120	100
640	340	53
40/40	11/9***	25
	40/40 40/120 640	40/4021/1540/12040/120640340

*** 10/7 fully commissioned

RD51 Mini-Week, CERN Geneve

TPCU Production Status

		_							_																_											_		_			
	201	.7																					20)18																	
	51	52	1	2	3 4	5	6	7	8	9 :	10 11	12	13 1	14 1	5 16	17 :	18 1	.9 20	21	22	23	24 2	5 26	27	28	29 3	0 3	1 32	33	34 3	5 36	5 37	38 3	39 4	0 41	. 42	43 4	44 4	45 4	46 47	48 4
				Jan	.18			Feb.	18		M	ar.18			Apr.1	8		Ma	ay.18			Jun.1	8		Ju	l.18			Aug.	18		Sep	.18			Oct.1	.8		1	Nov.18	
Batch	DB	4	27				#25	#28	#30			#32	<i>#</i>	34		A	36 #	38																				_			
IROC	99	1	09				119	129	139			149	1	59			1	79																							
QA at CERN [20/w]			(1	LO)			NGC	(10)	(10) (:	10)			(10) (:	10)		И	/GC (1	.0) (10)																						
Transportation [+1 w]					(1	0)>	•			18	12	18		18	3				22																						
QA BUDAPEST [25/m]	18		18					10			18				18					18					16															DI	o-Pb
Transportation to US [+1 w]				1	8				10				18				18					18				1	16											-	133		J-PD
IROC framing [4/w]	68				1	8			1	10				18				18					18					16													
Transportation in US [+1 w]							18				10				18				18					18					16												
GEMs	6/9/9	9/5		4	x GEM	4			3x (GEM4		-	‡27 1x G	EM4	#.	25 and #	28 has	10 GEN	14s																						
IROC Assembly [2/3w]	7		8	+9		10+	11	1	2+13		14+	15	16	+17		18+19		20+21	+22	2	3+24		25+26	+27	28	+29			+32	33+	-34			7	38+39	+40					
IROC to CERN																																									

TPCU Production Status

	203	7								-			-									_	20	018					_					-								
	51		1	2	3	Δ	5 6	7	8	q	10 1	1 12	13	14 1	15 16	6 17	18	19 2	20 21	22	23 2	24 25			28	29 3	30 3	1 31	2 33	3 34	35	36	37 3	38 3	39 40) 41	42	43	44	45	46 4	7 48 4
	51	32	1	-	5 n.18	-	5 0	Fo	o b.18	9		/ar.18		14 .		r.18	10		Aay.18			24 23 Jun.18		2/		29 3 ul.18		, 1 3.		ug.18			Sep.1		33 40		. 42 Oct.1				40 4 Nov.1	
Batch	DI	,		> #				#29		_	#31		#33	<u> </u>	#3		#37		viay.10	o #39		Juil. 10	0	+		JI.10		—	A	ug.10		 	Jep.	10		_	001.1				1407.1	5
OROC1	11				24	-		#29 134		_	144		154		#3 16		174			184					+							$\left - \right $		-		_						
QA at CERN [20/w]	5			1		10)	WGC	134	(10)			LO) WG		(10)		64 (10)					(10)			+	+									-								
	5								(10)	9	(1	10) WG			9	oc (10	y wec			WGC		9 7	,		+									_		_						
Transportation [+1 w] QA HELSINKI [25/m]	10		8		(8)		7) 3 avail.		r (4	-	6	9	(9	_	9	(9)	9	(9)			9)	9)		(9)		1000										_				TS3	1	b-Pb
Transportation in EUR [+1 w]	10	,	8 9		(8) >		3 avail. 8		9	1	_	9	(9		9	(9)	9	(9)	9			9	-	(9)	9	(10		10	+-			\vdash		_								
			9	-	->	3	8 10			9	_	-	9	wgg	-	9		9			_	-	9		y NGC	9		10 /GC 1($\left - \right $		_		_						
OROC framing [4/w] (per site)	68-	0	-	9		5			WGC			GC			<u>د</u>		WGC		WG			vgc			VGC			GC 1						_		_						
Transportation in EUR [0-1 w]		_	_	9-GSI	_	-> 9-1	HPD 9-G.	51	6-HPD	5	-GSI		9-HPD	<u> </u>		9-GS		9-1	HPD		9-GSI	_	9-HP	90	+	9.	P-GSI		<u>10-н</u>	1PD		$\left - \right $		_		_						
	203	7							1															018					_													
			1	2	2			_		~	10 1	1 12	12	14 1	15 1/	C 17	10	10 2	0 21	22	22.2	14 21			20	20 7	10 7	1 2	2 22		25	20	27 -				42	42		45	AC 4	7 40 /
	51	52	1	-	3	4	5 6		8	9				14		.6 17	18				23 2			2/				21 3		3 34			37 3		39 40		42		44			7 48 4
P I		4	_		n.18			_	b.18			Aar.18		<u> </u>	Apr	_		N	May.18	_	-	Jun.18	ð	+	JL	ul.18		_	A	ug.18	-	┝──-	Sep.1	18		-	Oct.1	ß		_	Nov.1	5
Batch	DI			> #	26	_		#29			#31		#33	4	#3		#37			#39				_						_				_		_	_					
OROC2	10	b		116				126			136	01	146		15		166		la-	176														_		_	_					
QA at CERN [20/w]							9			(10)		LO) WG		(GC (10)			(10	D) WGC		0	-	-	+		_				-			_		_	_					
Transportation [+1 w]						1	9				9	9			4	9	9	100		9		9 6						_				-		_		_	_			TS3		b-Pb
QA BUDAPEST [25/m]	2:		1		9		5		15			_	12					18		_	_		.8		_		12	_	_	+	-	\vdash		_		_	_					
Transportation in EUR [+1 w]		_	_			9	6			9	_	6			9			9	9			9	_	9		_		96		_				_		_						
OROC framing [4/w] (per site)	71-	.9	_	9			9		6		9		6	WGC	C	9	w		9		9	WGC		9	9		WGC	9	9 6					_		_						
Transportation in EUR [0-1 w]		_	8	B-HPD		> 9-G	S/	9-HPI	0	6-GSI		6-HP	סי	9-GSI			9-HPD			9-GSI	9-1	HPD			9-GSI	9	-HPD		9-G.	isi 6-HPC	D			_		_						
		-																						246																		
	20:				-		-		-	-								10			-			018		-					-											
	51	52	1	2	3	4	5 6	7	8	9		1 12		14 1	15 10		18		20 21			24 25		5 27		29 3		31 32				36	37 3		39 40	41 ر	. 42		44		46 4	
		_		Jar	n.18	_			b.18		N	Aar.18			Apr	r.18			May.18	8		Jun.18	8	_	JL	ul.18		_	A	ug.18		Ļ	Sep.1	18			Oct.1	8		_	Nov.1	8
Batch	DI		#27					5 #28				#32		#34			#36						_	_						_						_	_					
OROC3	10	_	113				_	3 133				153		163			173							_						_						_	_					
QA at CERN [20/w]	8			(10)			WGC	(10)		(20)		<mark>C</mark> (10)		(10) <mark>W</mark> C			(1	10) (10																	_	_					
Transportation [+1 w]						(6)			9		1	18		9	9	-			9	9	7																_			TS3		b-Pb
QA HELSINKI [25/m]	18	3	9	(9)		5	9		(8			12		(9)			(9)		(9)			15)		_	11) 🏅	໌ (5)																
Transportation in EUR [+1 w]					9	>	9					9			9		9		9			9		9			9	7			_											
					9	>	9			9		9			·					- A		- L.		_		_		_	_													
OROC framing [4/w] (per site) Transportation in EUR [0-1 w]	58-	.7		7	y	9	y		9	9	9	y	9	,		9		9		_	9		9		9			9	7													

	2017									2018					
	51 52	1234	5 6 7	8 9 10	0 11 12 13	14 15 16	17 18 19	20 21 22	23 24 25	26 27 2	8 29 30 31	32 33 34 35	36 37 38 39	40 41 42 43 44 4	45 46 47 48 4
		Jan.18	Fe	b.18	Mar.18	Apr.18	8	May.18	Jun.18		Jul.18	Aug.18	Sep.18	Oct.18	Nov.18
GEMs (GSI)	16/16/16	17/15/18	26/24/18	35/30/27	35/30/27	35/39/36	44/39/36	44/48/45	53/48/45	53/57/54	62/57/54	62/66/63			
OROC (GSI)		3	4 5	6	7 8	9 10	0 11	12 1	l <mark>3 14</mark>	15	16 17	19 20			S3 Pb-Pb
GEMs (HPD)	8/8/8	20/25/19	29/34/28	35/34/28	44/40/37	44/40/37	44/49/46	53/49/46	53/58/55	62/58/55	62/67/64	72/73/71			35 PD-PD
OROC (HPD)		1	2 3	4	5 6	7 8	3 9	10 1	11+12 1	3+14	15+16	17+18 19+2	0		

- 1. Chamber commissioning at the assembly sites
- 2. Stability tests at LHC

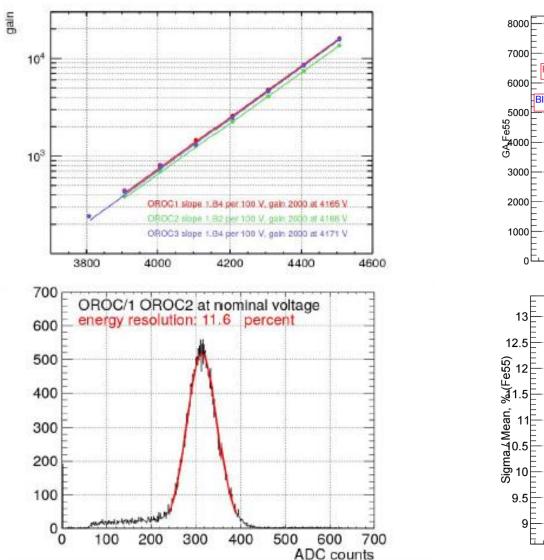
RD51 Mini-Week, CERN Geneve 20th February 2018

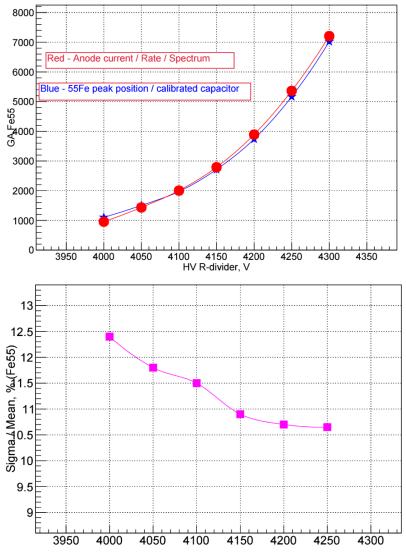
LIST OF TESTS

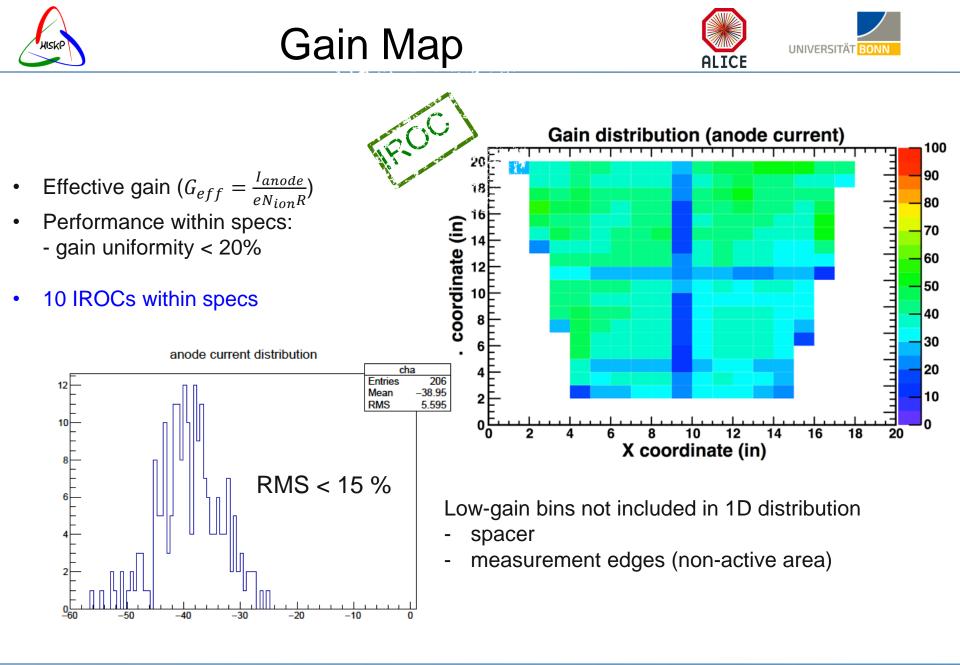
- 1. Gas tightness (< 0.5 ml/h)
- 2. Gain curve
- 3. Gain uniformity (<20 %)
- 4. IBF uniformity (IBF = 0.7%, $\Delta \epsilon < 20\%$)
- 5. Full X-ray irradiation (10 nA/cm²) for 6h

Gas: Ne-CO₂-N₂ (90-10-5)

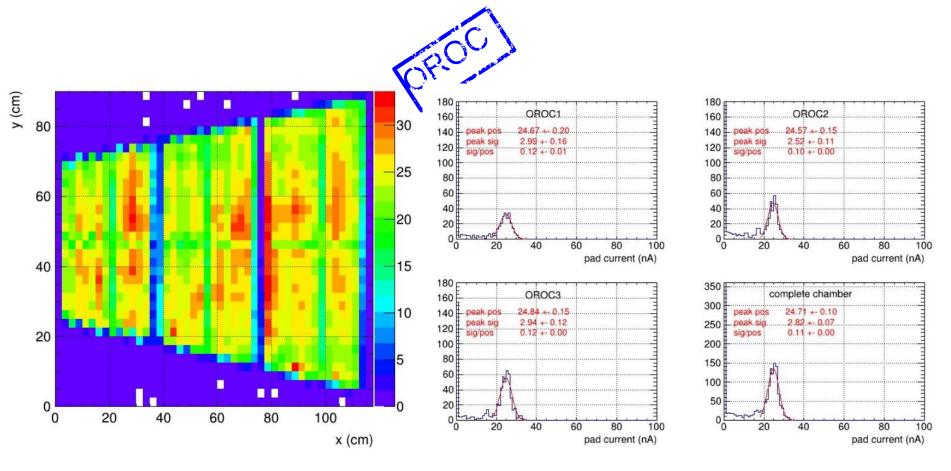
HV: resistor chain

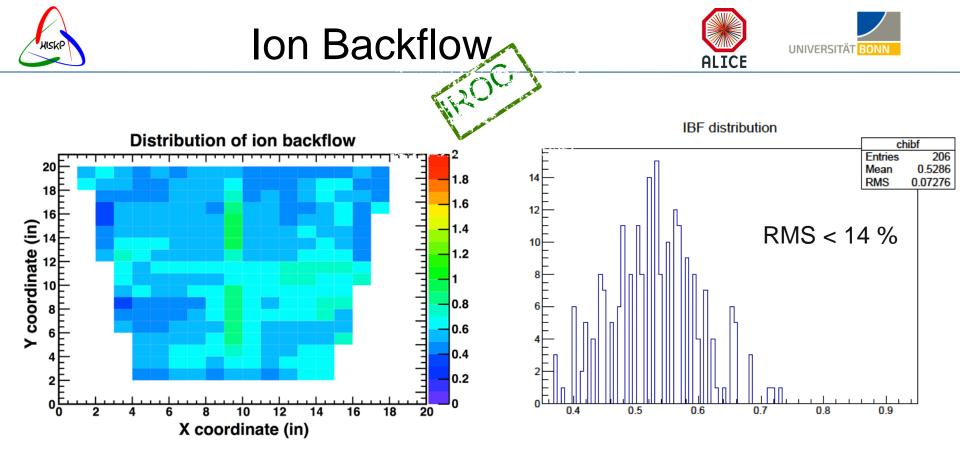

Settings: GEM1/2/3/4 = 270/230/288/359 V T1/T2/T3/IND = 4/4/0.1/4 kV/cm

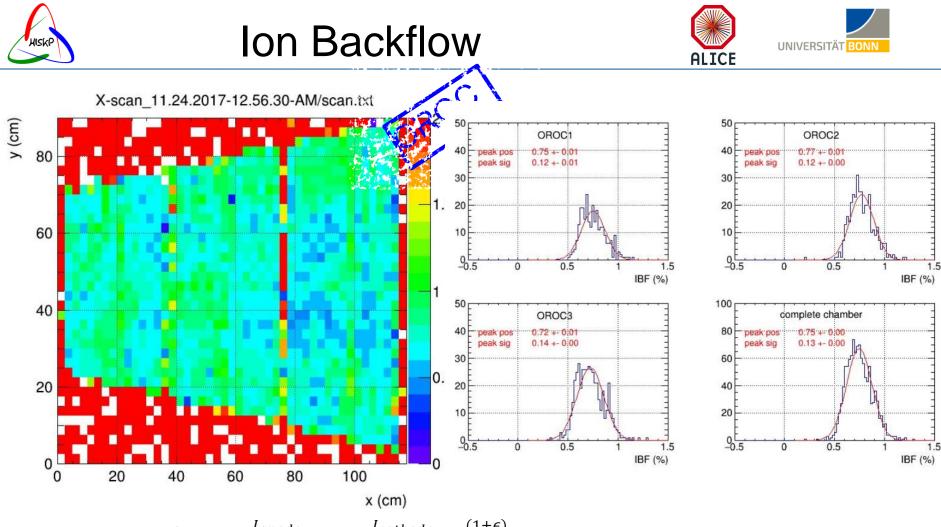

Readout: single channel pre-amplifier + shaper + ADC, amperemeters

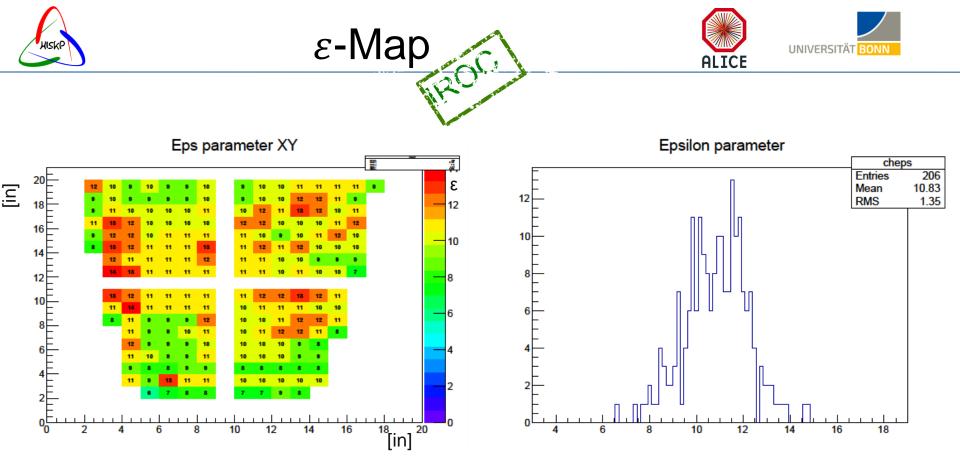

Production Progress

RD51 Mini-Week, CERN Geneve



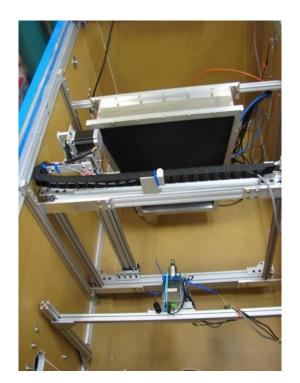

Gain Map




- Gain uniformity RMS well below ≤ 20% (within the specs)
- OROC3 non-uniformity correlates with a single foil hole-size distribution investigation ongoing

- Ion Backflow $(G_{eff} = \frac{I_{anode}}{e N_{ion}R}, IB = \frac{I_{cathode}}{I_{anode}} = \frac{(1+\epsilon)}{G_{eff}})$
- Performance within specs. *IB* < 1 %
- Mean value in agreement with IB < 0.7% measured with 10x10 cm² GEMs at $G_{eff} = 2000$
- For the final TPC performance (space charge distortions) $\rightarrow \epsilon$ uniformity!
- 18 segments means 18 times $10 \times 10 \ cm^2$ detectors (In total 206 individual measurements)
- Mean value in good agreement with the R&D results

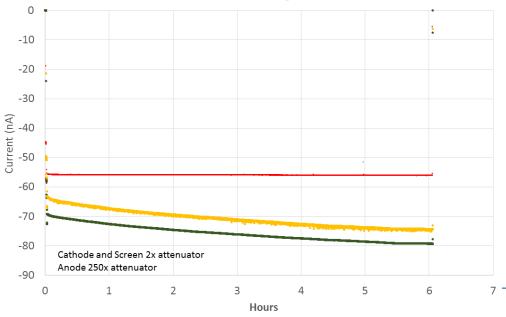
- Ion Backflow $(G_{eff} = \frac{I_{anode}}{e N_{ion}R}, IB = \frac{I_{cathode}}{I_{anode}} = \frac{(1+\epsilon)}{G_{eff}})$
- Performance within specs. *IB* < 1 %
- Mean value in agreement with $IB \sim 0.7\%$ measured with 10x10 cm² GEMs at $G_{eff} = 2000$
- This is the area of 66 times $10 \times 10 \text{ } cm^2$ detectors (in total ~ 900 individual measurements)


• Epsilon proportional to the cathode current:

•
$$G_{eff} = \frac{I_{anode}}{e N_{ion}R}, IB = \frac{I_{cathode}}{I_{anode}} = \frac{(1+\epsilon)}{G_{eff}}, \varepsilon = \frac{I_{cathode}}{(eN_{ion}R)} - 1$$

- Performance within specs:
 - gain uniformity RMS < 20%; epsilon RMS < 20%
- The calibration procedure has been demonstrated to work for effective non-uniformities of ϵ ~25%

Full Irradiation with X-Rays



RD51 Mini-Week, CERN Geneve

- Induce 10 nA/cm² current (expected in Run 3) at the pad plane after amplification G = 2000 for 6h
- Cathode/Anode current read with pA-meter
- Cathode/anode currents go directly to zero after X-ray off
- No energy resolution deterioration after the test
- Leakage current of all foils <0.5 nA after the test
- no discharge recorded during 6 hours of full irradiation

IROC-04 Currents During Full Illumination

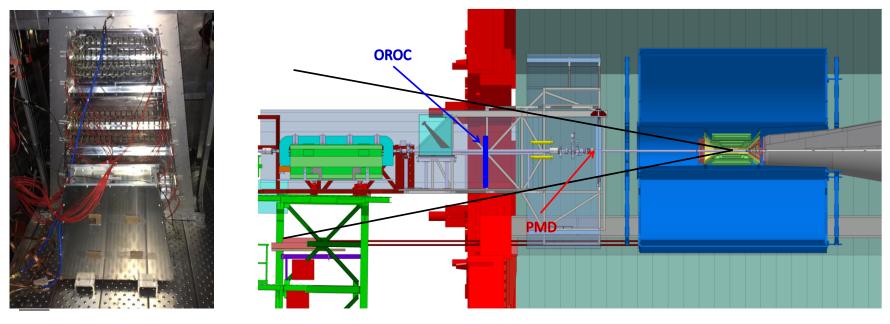
- Well established acceptance criteria
- Similar setups in all three assembly sites (Uni Yale, GSI Darmstadt, HPD Bucharest)
- Possible to assemble and commission 2-3 IROCs/month and 4 OROCs/month
- Acceptance criteria upon arrival at CERN:
 - Capacitance, resistance measurements
 - Leakage current at 350 V in dry gas
 - Full voltage in dry gas
 - Part of the chambers will be tested at LHC
 - All tests documented in the database

Chambers in the Database

part	item	batch	sent from	to	date	location	QA status	link	comment
IROC chamber	IROC/01					Yale		x	
IROC chamber 1	IROC/03					CERN		x	
IROC chamber 1	IROC/04					CERN		x	
IROC chamber	IROC/05					CERN		x	
IROC chamber	IROC/06					Yale		X	
IROC chamber 1	IROC/07					Yale		x	
IROC chamber	IROC/08					Yale		x	
IROC chamber 1	IROC/09					Yale		x	
IROC chamber	IROC/10					Yale		x	
IROC chamber	IROC/11					Yale		x	
IROC chamber	IROC/12					Yale		x	
IROC chamber	IROC/13					Yale		x	
IROC chamber	IROC/14					Yale		x	
IROC chamber	IROC/15					Yale		x	
14 items									

part	item	batch	sent from	to	date	location	QA status	link	comment
OROC chamber	OROC/01					CERN		x	PRR (aka FINAL) OROC
OROC chamber	OROC/02					GSI		x	At the beginning of commissioning, 2 kV applied by mistake to pads.
OROC chamber	OROC/03					Bucharest		X	former OROC 23
OROC chamber	OROC/04					Bucharest		x	repaired HV-cable GEM 4 TOP (-1160V) tested at -3500V> 75pA
OROC chamber	OROC/05					GSI		X	two discharges during HV-wire irradiation (at a wrong position), no discharges in a second test
OROC chamber	OROC/06					GSI		x	O3-G1-012 touched, replaced with O3- G1-016
OROC chamber	OROC/07					Bucharest		X	
OROC chamber	OROC/08					Bucharest		X	
OROC chamber	OROC/09					Bucharest		x	
OROC chamber	OROC/10					GSI		X	bump in gain map
OROC chamber	OROC/11					GSI		X	
OROC chamber	OROC/12					GSI		x	
OROC chamber	OROC/13					HD		x	
OROC chamber	OROC/14					HD		x	
OROC chamber	OROC/15					HD		x	
OROC chamber	OROC/16					HD		x	
OROC chamber	OROC/17					HD		x	
17 items									

RD51 Mini-Week, CERN Geneve



ROC test at P2

Goals:

- Test IROCs and OROCs under radiation conditions that are comparable to Run 3
- Practice HV hardware and control tools complex system
- Optimize operational point: HV settings, decoupling resistors, trip settings

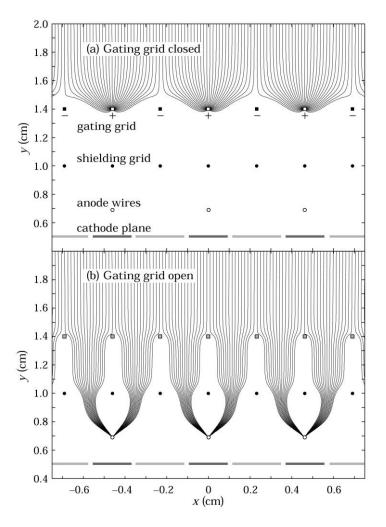
- IROC and OROC are placed in a miniframe, close to the beam pipe, between PMD and compensator magnet
- In 150kHz pp, **direct** load on ROCs in this position is comparable to that on ROCs installed in the TPC in Run 3
- HV supply in CR4, control from ALICE Control Room

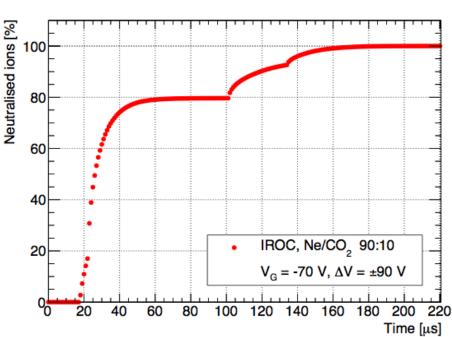
RD51 Mini-Week, CERN Geneve 20th February 2018

- We have come a long way from R&D to full production
- Intensive R&D lead to the 4-GEM configuration, fulfilling all requirements
- We are in full production mode now, but the end of production is already near
- Results from R&D ($10x10 \ cm^2$) phase in good agreement with the results of the final chambers
- Full production:
 - GEM production and QA-B on track 500 out of 720 produced (more than 2/3)
 - GEM QA-A 400 out of 720 (55 % done already)
 - GEM framing 340 out of 640 (~ 50 %)
- ROC production/qualification on schedule, until Q3.2018
- OROC at LHC running stable. More chambers to be tested in the upcoming months
- LHC Long Shutdown 2 in 2019-2020: chamber and FEE installation, commissioning will be soon the crucial challenge
- RD51 and CERN PCN workshop were with us and part of everything during the whole time
- Your are/were gratefull for all you advice, comments and criticism
- Thank you all a lot that you contributed in such an active way !!!

Backup

RD51 Mini-Week, CERN Geneve 20th February 2018


RD51 Mini-Week, CERN Geneve 20th February 2018



Advantages and Limitations

of a TPC

- Ion Backflow suppression of a MWPC with a Gating grid ~ 10⁻⁵
- 100 µs electron drift time + 200 µs to neutralise all ions
- Total cycle time ~ 300 µs limits the maximal readout rate to ~ 3 kHz (in p-p)
- Trigger Rate ~ 600 Hz for Pb-Pb (300 Hz in Run 1)

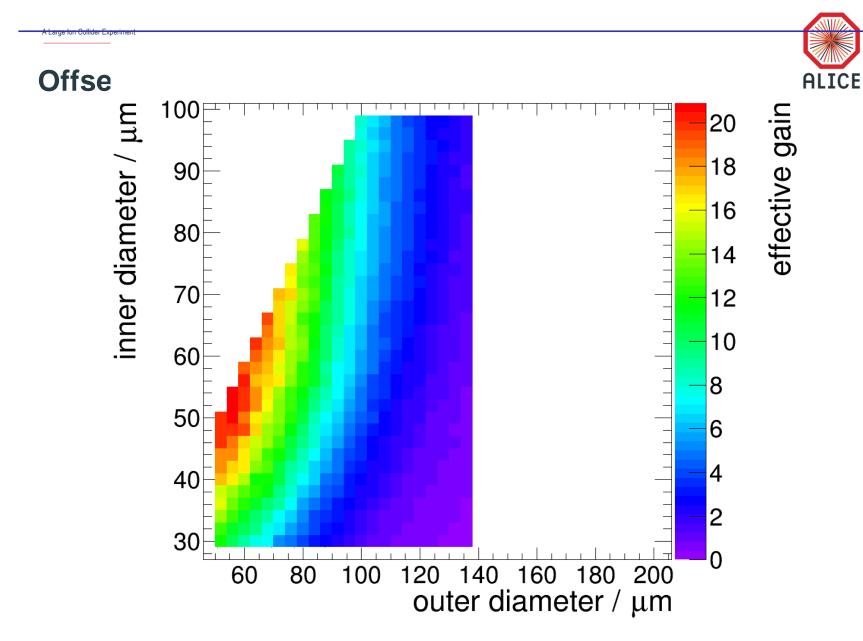
ALICE

@ 20m

@20m

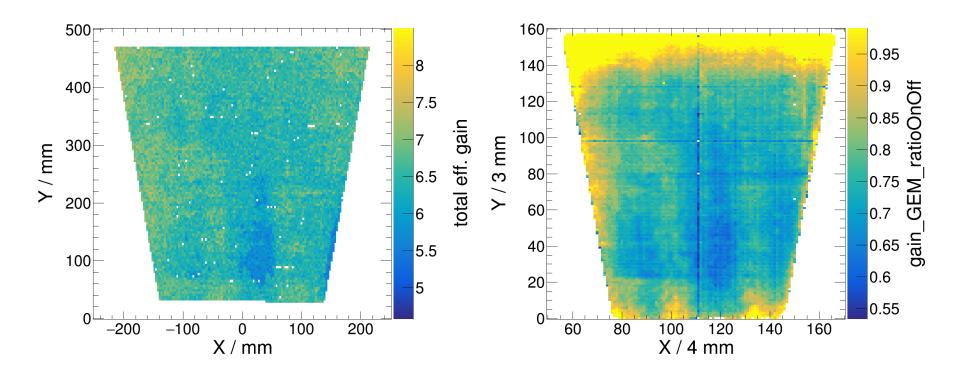
- 1. Check ledges under the microscope
- Document possible damages
 Remove overbanging glass fibers to
- 3. Remove overhanging glass fibers with sand paper (see picture)
- 4. Clean in an ultrasonic bath for at least 5 minutes. For example:
 - Bath 1 with isopropanol for pre-cleaning 5' (or pre-clean with iso-propanol manually)
 - Bath 2 with isopropanol for final cleaning 3'-5' and let isopropanol drain
 - Bath 3 with distilled water 3' and let water drain
- 5. Blow dry with nitrogen

@20m


@20m

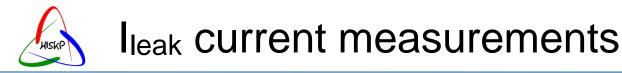
- 6. Check ledges again under the microscope
- 7. Put ledges into the dry cabinet. Leave them (at least) over night for drying before the final assembly.

RD51 Mini-Week, CERN Geneve

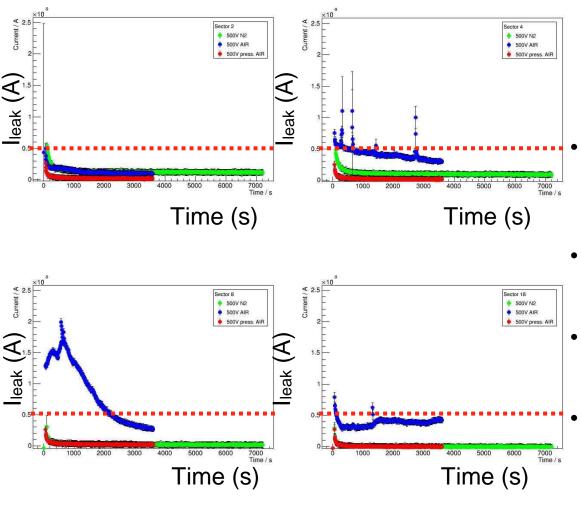


19001220,1181.Ball

Simulation vs. measurement

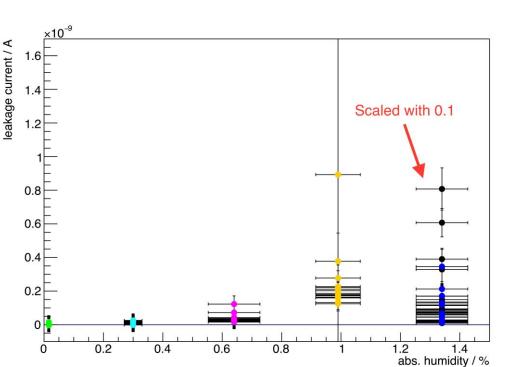


(1) Simulation


(2)Measurement

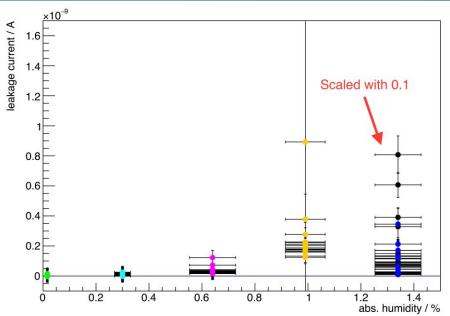
1900121.20,1181.Ball

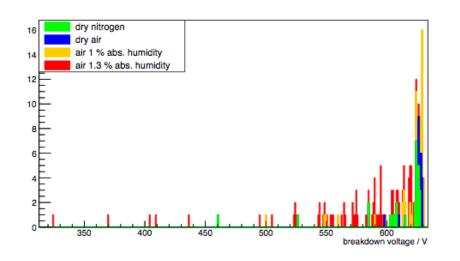
-1			GEIVI	foils geon	letries					
100	hask tech			-	Preliminary	TOP				
			$ areas (\leq 4)$		115 . A.	S The S				
	Diameters		optical shape							
	Hole location	Diam. [µm]	Err. [µm]			воттом				
	Гор	70.1	± 0.2							
	Middle	49.1	± 1.2							
	Bottom	69.4	± 0.8		00					
1	eliminary									
ingle-ma ≻ S	ask techni uitable fo	r large ar								
ingle-ma ≻ S	ask techni uitable fo	r large ar	eas :" bi-conical	shape		TOP				
ingle-ma ≻ S	ask techni uitable fo	r large ar symmetric	" bi-conical	shape	200	Тор				
ingle-ma > S > G	ask techni uitable fo ives a "as	r large ar symmetric oscopy	" bi-conical			Тор				
ingle-ma	ask techni uitable fo ives a "as digital micr	r large ar symmetric oscopy	c" bi-conical	otical microscopy		00				
ingle-ma S G iameters ole location	ask techni uitable fo ives a "as digital micr Diam. [µm]	o <mark>r large ar</mark> Symmetric Oscopy Err. [µm]	c" bi-conical cross section op Diam. [μm]	otical microscopy Err. [μm]		00				
ingle-ma S G iameters ole location Op	ask techni uitable fo ives a "as digital micr Diam. [µm] 73.8	oscopy Err. [μm] ± 3.3	c" bi-conical cross section op Diam. [μm] 71.0	bitical microscopy Err. [μm] ± 2.1		00				



- Strong non linear humidity dependent > 0.6 % abs. humidity. Problematic if room air conditions are not under control. Typical room air conditions (0.8-1.5 %) abs humidity
- Variance of leakage current between segments is large in humid conditions. Reason unknown.
- I_{leak} variations of different segments could not be related to optical or stability measures
- After additional HV cleaning in humid condition most sectors show lower leakage currents
- Constant QA threshold in uncontrolled humidity conditions can not be used as a quality criteria.

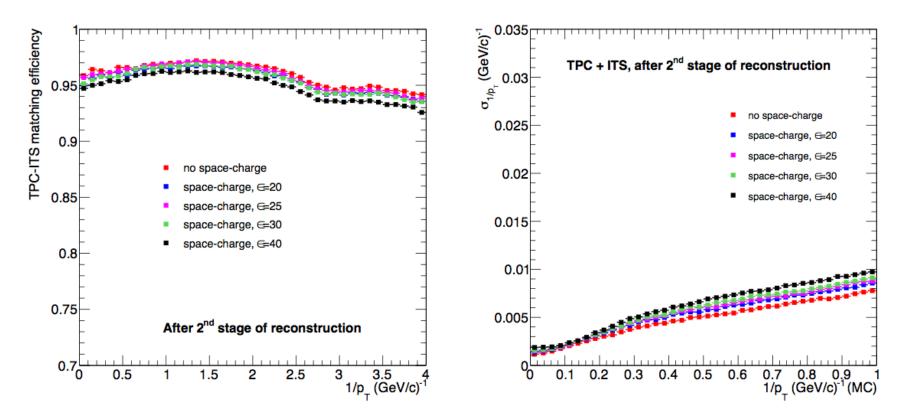
 Strong non linear humidity dependent > 0.6 % abs. humidity. Problematic if room air conditions are not under control. Typical room air conditions (0.8-1.5 %) abs humidity


ALICE


UNIVERSITÄT BO

- Variance of leakage current between segments is large in humid conditions. Reason unknown.
- I_{leak} variations of different segments could not be related to optical or stability measures
- After additional HV cleaning in humid condition most sectors show lower leakage currents
- Constant QA threshold in uncontrolled humidity conditions can not be used as a quality criteria.

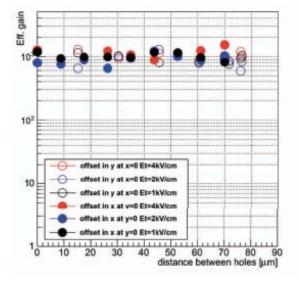
- Number of discharges rise with humidity
- Has also be observed in "M. C. Altunbas et al. Construction, test and commissioning of the triple-GEM tracking detector for COMPASS. Nucl. Instrum. Meth., A490:177-203, 2002."
- Observation contradicts expectation from gas properties GEM is not parallel plate capacitor → electrode quantities change e.g. dielectric constant, surface conductivity → behaviour not fully understood
- GEMs show some training effect (breakdown voltage increasing with number of tries). So far a clear quality criteria could not be derived. Currently sparks are detected. Foils are excluded if sparking continues after long term tests and sparks appear at the same position (red light)
- · Avoid sparking \rightarrow avoid humidity

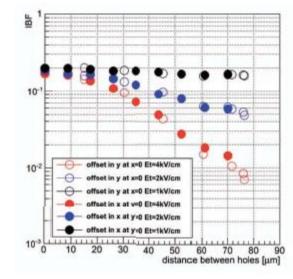

Space-Charge Effects at ALICE

d(r ϕ) (cm) for Ne-CO, -N $_2$ (90-10-5), 50 kHz, ϵ = 20 dr (cm) for Ne-CO, -N $_2$ (90-10-5), 50 kHz, ϵ = 20 (mo) (LD) 240 2404 20220220 15. 200 200 10 190 160 æ. 160 160 5. -A 140 140 Û. 120 120 -61 -5 100 100 8. 40 200250 250 -200150200250z (cm) z (cm)

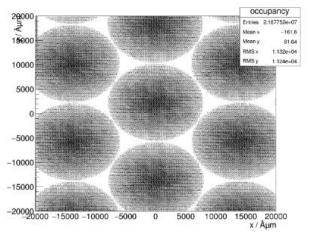
- lons from 8000 events pile up in the drift volume at 50 kHz Pb-Pb collisions ($t_{d,ion} = 160$ ms)
- Total number of ions in drift volume strongly depends on *IB*: $n_{tot} = n_{ion} * IB * G_{eff}$; $\epsilon = IB * G_{eff}$ -1 ۰
- 1% of IB at $G_{\text{eff}} = 2000 \ (\varepsilon = 20)$
 - distortions up to $dr \approx 20$ cm and $dr\phi \approx 8$ cm (at small r and z)
 - well below 10 cm for the largest part of drift volume
- Corrections to $O(10^3)$ are required for final calibration (to the level of intrinsic resolution, $\sigma_{r\phi} \sim 200 \ \mu m$)
- 2-stage calibration and reconstruction scheme

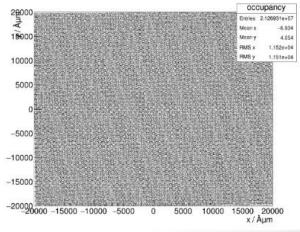
Testing limits of calibration procedure at up to twice the nominal ion density ($\epsilon = 40$)


- tracking efficiency not compromised
- slight decrease in p_{t} resolution at low momenta
 - does not compromise physics program


UNIVERSITÄT BO

Rotation of Foils

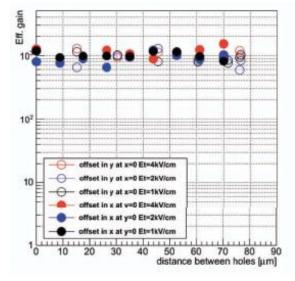




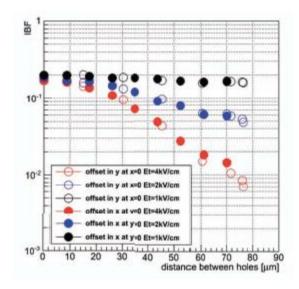
- Effective gain independent of hole alignment
- Ion backflow highly dependent on hole alignment

Foils rotated 1°

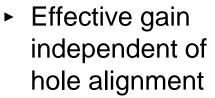
Foils rotated 90° to each other


- Effect of rotation of GEM to each other
- Ion backflow distributed uniform and reproducable

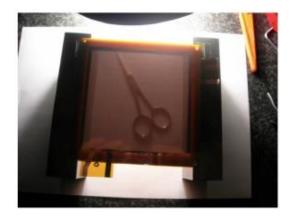
RD51 Mini-Week, CERN Geneve



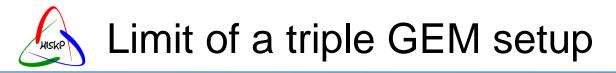
Rotation of Foils

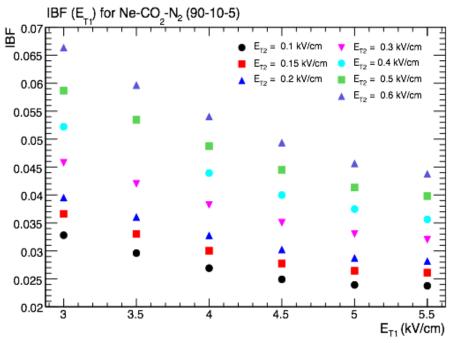


Foils not rotated

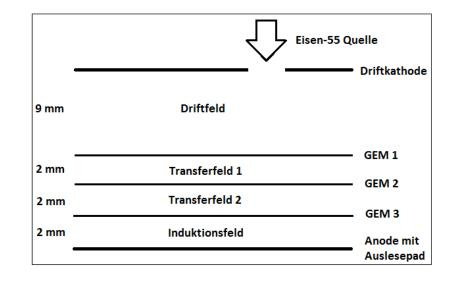


Foils rotated 90° to each other

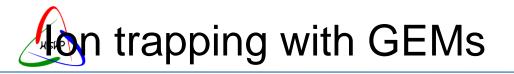

 Ion Backflow highly dependent on hole alignment


- Effect of rotation of GEM to each other
- Ion backflow distributed uniform and reproducable

RD51 Mini-Week, CERN Geneve

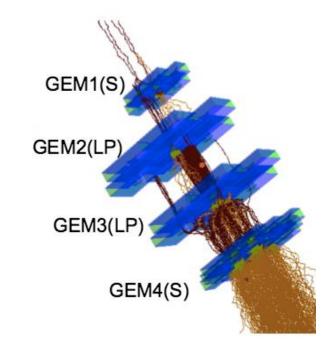


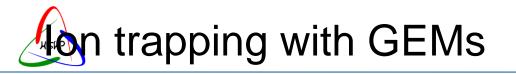
CERN-LHCC-2013-020



Limitations of a triple GEM setup

Asymmetric field configuration can be repeated in a GEM stack ! $E_{drift} < E_{T1}, E_{T2} < E_{ind}, \Delta U_{G1} < \Delta U_{G2} < \Delta U_{G3}$


- ▶ Ion Backflow was measured with triple GEM stack. Best value achieves was around 2.5 % at a gain of $2000 \rightarrow \epsilon \sim 50$
- Asymmetric field configuration separates Gain of GEM₃ from Gain of GEM₁ + GEM₂
 - \rightarrow higher discharge probability

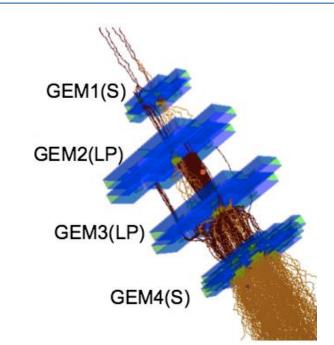

Electron transport properties for IB optimised HV settings

- ϵ_{coll} = collection efficiency
- ϵ_{extr} = extraction efficiency
- M = gas multiplication factor
- $G_{eff} = \epsilon_{coll} \times M \times \epsilon_{extr} = effective gain$

	€ _{coll}	n _{e,in}	М	n _{e-ion}	Eextr	n _{e,out}	G	n _{ion,back}	fraction of total IBF (sim.)	fraction of total IBF (meas.)
GEM1 (S)	1	1	14	13	0.65	9.1	9.1	3.6 (28%)	40%	31%
GEM2 (LP)	0.2	1.8	8	12.7	0.55	8	0.88	3.3 (26%)	37%	34%
GEM3 (LP)	0.25	2	53	104	0.12	12.7	1.6	1.3 (1.3%)	14%	11%
GEM4 (S)	1	12.7	240	3053	0.6	1830	144	0.84 (0.03%)	9%	24%
Total				3183		1830	1830	9 (0.28%)		

RD51 Mini-Week, CERN Geneve

Electron transport properties for IB optimised HV settings


- ϵ_{coll} = collection efficiency
- ϵ_{extr} = extraction efficiency
- M = gas multiplication factor

 $G_{eff} = \epsilon_{coll} \times M \times \epsilon_{extr} = effective gain$

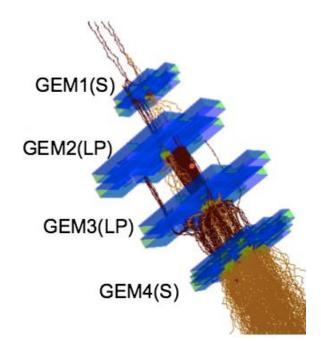
 n_{e-ion} = number of produced e-ions pairs


 $n_{ion,back}$ = number of ions drifting back into the drift volume (ϵ)

 $IB = (1+\varepsilon)/G_{eff}$

	$\epsilon_{\rm coll}$	n _{e,in}	М	n _{e-ion}	Eextr	n _{e,out}	G	nion,back	fraction of total IBF (sim.)	fraction of total IBF (meas.)
GEM1 (S)	1	1	14	13	0.65	9.1	9.1	3.6 (28%)	40%	31%
GEM2 (LP)	0.2	1.8	8	12.7	0.55	8	0.88	3.3 (26%)	37%	34%
GEM3 (LP)	0.25	2	53	104	0.12	12.7	1.6	1.3 (1.3%)	14%	11%
GEM4 (S)	1	12.7	240	3053	0.6	1830	144	0.84 (0.03%)	9%	24%
Total				3183		1830	1830	9 (0.28%)		

RD51 Mini-Week, CERN Geneve



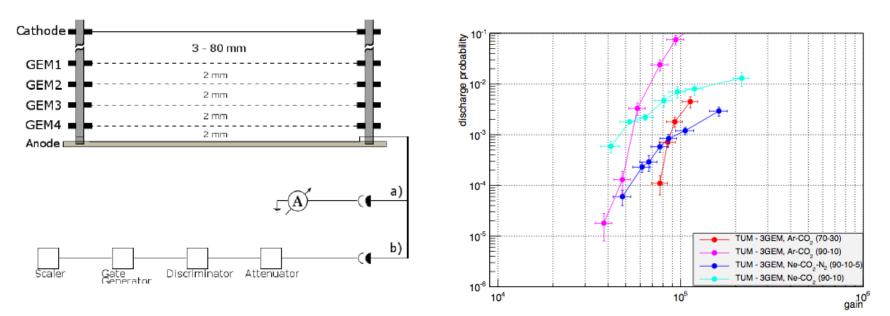
Electron transport properties for IB optimised HV settings

- ϵ_{coll} = collection efficiency
- ϵ_{extr} = extraction efficiency
- M = gas multiplication factor
- $G_{eff} = \epsilon_{coll} \times M \times \epsilon_{extr} = effective gain$
- n_{e-ion} = number of produced e-ions pairs
- $n_{ion,back}$ = number of ions drifting back into the drift volume (ϵ)

fraction of total IB: simulation vs. experiment

	$\epsilon_{\rm coll}$	n _{e,in}	М	n _{e-ion}	€ _{extr}	n _{e,out}	G	n _{ion,back}	fraction of total IBF (sim.)	fraction of total IBF (meas.)
GEM1 (S)	1	1	14	13	0.65	9.1	9.1	3.6 (28%)	40%	31%
GEM2 (LP)	0.2	1.8	8	12.7	0.55	8	0.88	3.3 (26%)	37%	34%
GEM3 (LP)	0.25	2	53	104	0.12	12.7	1.6	1.3 (1.3%)	14%	11%
GEM4 (S)	1	12.7	240	3053	0.6	1830	144	0.84 (0.03%)	9%	24%
Total				3183		1830	1830	9 (0.28%)		

RD51 Mini-Week, CERN Geneve



discharge probability

Triple GEM stack in standard settings

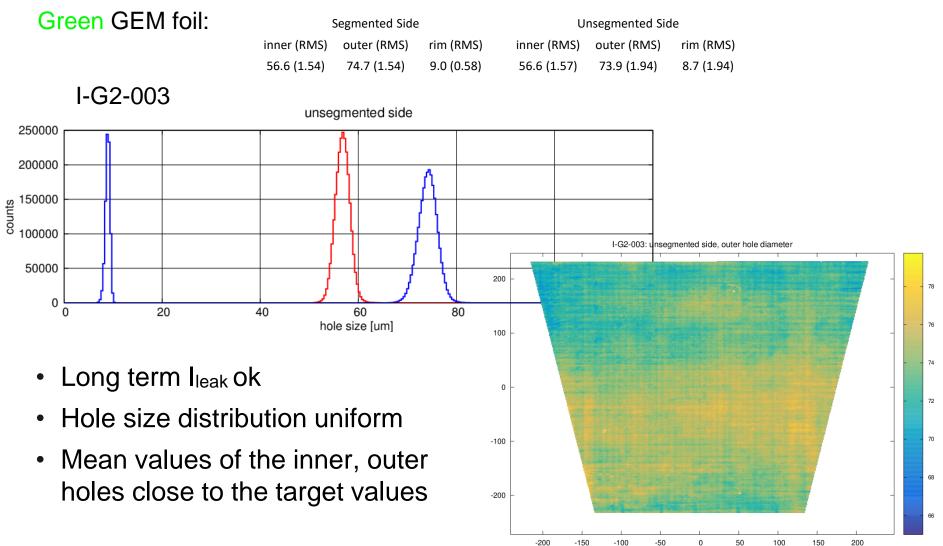
Optimisation of two parameters at the same time is conflicting:

- ²²⁰Rn source, randomly distributed in the detector
- Measurement for TPC gas mixtures: Ar-CO₂ (90-10), Ne-CO₂ (90-10), Ne-CO₂-N₂ (90-10-5)
- Different slopes for Ar- and Ne-based gas mixture
- Clear influence of additional quencher

- QA of the CERN workshop:
 - Deliver GEM foils within specification agreed upon in collaboration document
- Basic QA (CERN):
 - Reject malfunctioning GEM foils at the earliest possible stage
 - Give fast feedback to the producer (CERN)
 - First reference (to identify e.g. defects coming from transport)
- Advanced QA:
 - Additional quality selection (hole size distributions, defect classification, gain uniformity prediction, long term stability)
 - Provide additional criteria to select the best foils
 - Provide additional information for the producer to improve/optimise the production process
- Basic QA (Framing-, Assembly sites)
 - Continuous quality monitoring
 - Shows if the basic HV stability is kept after each additional production step

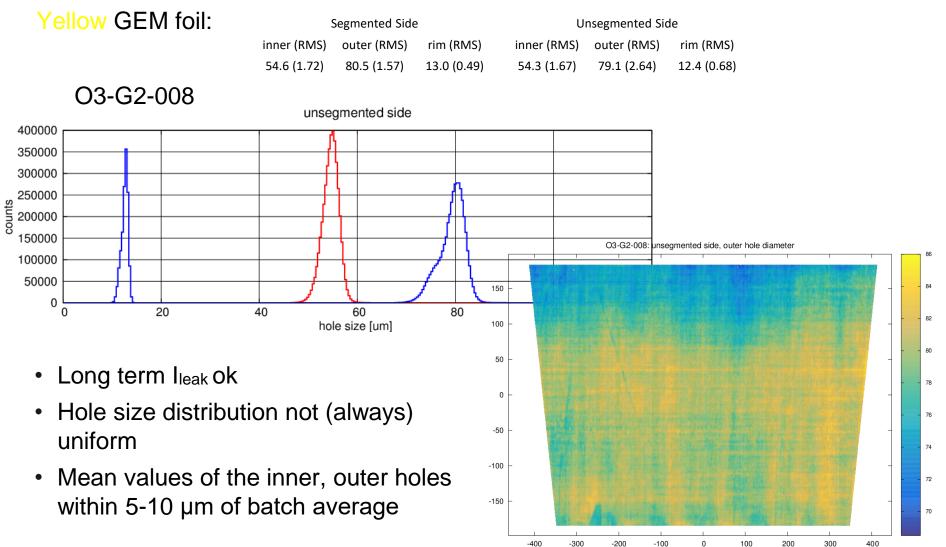
- Red Light:
 - -GEM did not pass Basic QA (most important HV stability) \rightarrow Reprocessed
 - -Not (necessarily) permanent
- Orange Light
 - Basic QA passed \rightarrow HV stability ok
 - Hole size distributions: both inner or outer holes show an asymmetry
 - Target design values for hole (inner outer deviate more than 10 μ m)
- Yellow Light:
 - Basic QA passed \rightarrow HV stability ok
 - Hole size distributions: either inner or outer holes show an asymmetry
 - Predicted gain spread larger than 10 % (RMS), long term HV stability acceptable
- Green Light
 - Passed all basic and advanced QA criteria
 - Basic HV stability is kept after all processing steps

Advanced QA consists of:


- High definition optical scan including the determination of 1-dim and 2-dim hole size distributions and map of optical defects
- Gain uniformity measurements of statistically significant sample of GEM foils
- Correlation of gain uniformity and hole size distribution is used to predict the gain uniformity of each GEM foil
- Ileakage measurements for at least five hours, data is stored in a leakage current file with common data format
- Determination and classification of defects (in preparation)

10	OA-B	I_leak histo data	01_02-G1-001_N2_corrected.txt_evaluate	2 2017-08-11 16:22:15	no comment I avg all segments 10.7, sparks: 0	Viktor	file
10	2.1.2	1_icun mixo unu			ok	Vildor	inc
12	12	hole size distribution	O2-G1-001_1D.txt evaluate 1D	2017-06-09 11:44:02	no comment I avg all segments 10.7, sparks: 0	Marton	file txt
12	12	hala aina data 2D	O2 C1 001 2D test	2017-06-09 11:44:43	no comment avg all segments 10.7, sparks: 0	Mantan	file test
13	13	hole size data 2D	O2-G1-001_2D.txt evaluate 2D	2017-00-09 11:44:45		Marton	file txt
					no comment I avg all segments 3.4, sparks: 0		
15	QA-A	long term leakage current data	<u>O2-G1-001-20170504-15-42_sectors.txt</u> evaluate	2 2017-06-29 14:11:17	sticky rolled after shorted sector, looks better although many sparks		file txt
		frame glueing					
20	20	comment if not perfect (wrinkels?)					eq
25	25	quality	В	2 2017-06-10 23:01:47	Also slight problems from the HV, had to sticky roll it, but came back alive.	Marton	le C
subn	nit	darker field: mouse hover for more explanations					

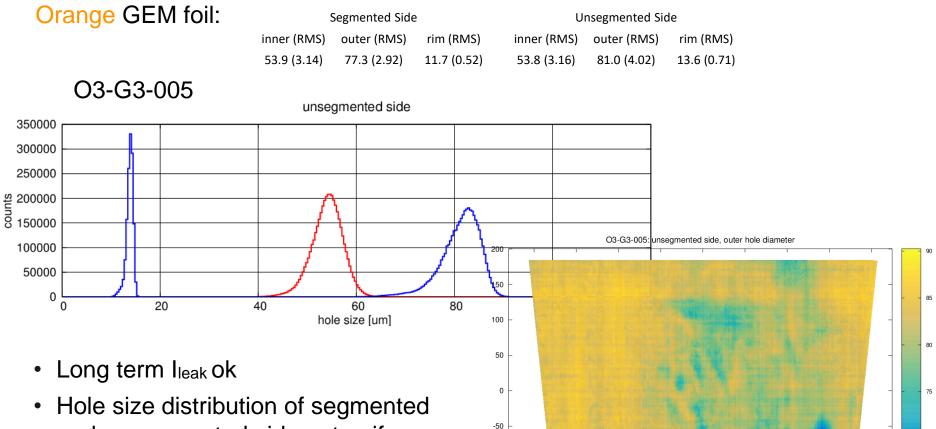
Advanced QA


22. September 2017

[mm]

Advanced QA

ALICE FSP Meeting 2017 - Buchenau


22. September 2017

[mm]

Advanced QA

-100

-150

- and unsegmented side not uniform
- Mean values of the inner, outer holes bigger than 10 µm of batch average

22. September 2017

-200

-100

100

0 [mm] 200

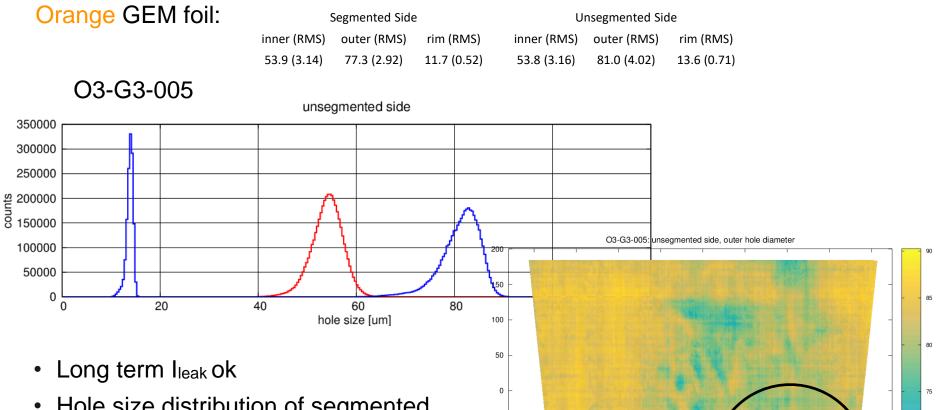
300

-300

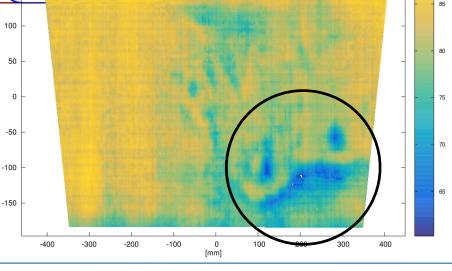
-400

400

70


65

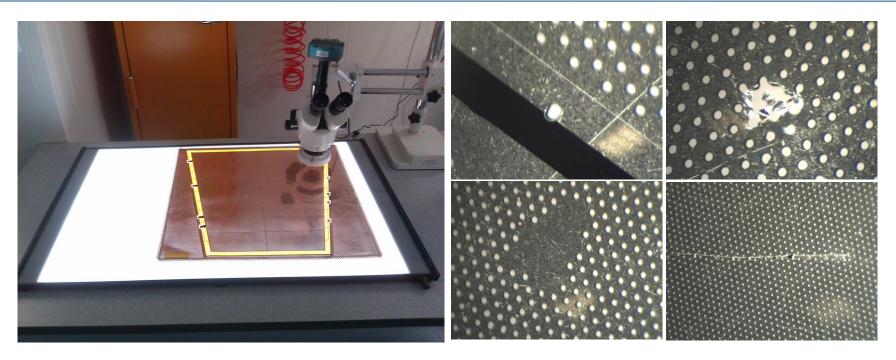
ALICE FSP Meeting 2017 - Buchenau



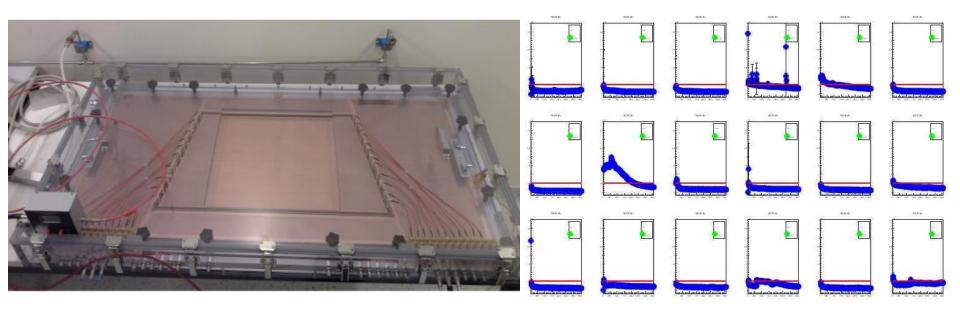
Advanced QA

- Hole size distribution of segmented and unsegmented side not uniform
- Mean values of the inner, outer holes bigger than 10 µm of batch average

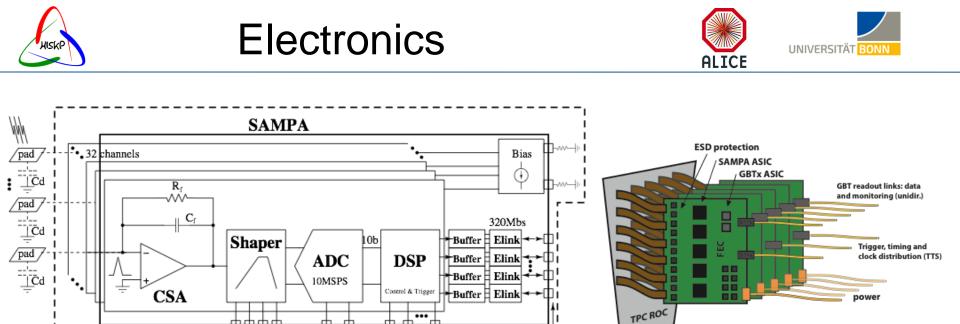
ALICE FSP Meeting 2017 - Buchenau


22. September 2017

Basic QA



 Repeat coarse optical inspection and cross-check with known defects from the database



Basic QA

- Repeat coarse optical inspection and cross-check with known defects from the database
- We have to monitor the I_{leak} for each individual HV segment to fall below a specific value (0.5 nA/segment). I_{leak} will be measured before and after the framing

New FE ASIC "SAMPA" (130 nm TSMC CMOS)

Positive or negative input

Shaping time control Y

FEC

- Programmable conversion gains and peaking times

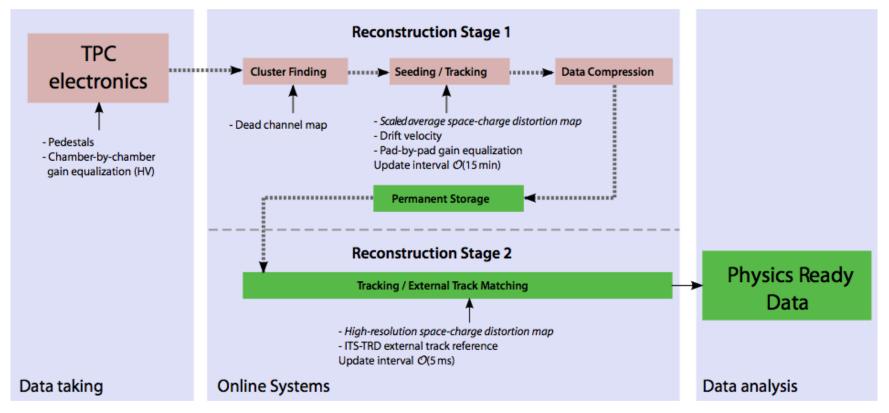
Gain control

Different readout modes: triggered, continuous with DSP, continuous with DSP by-pass

...

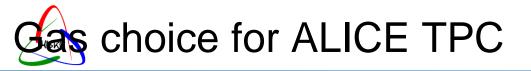
IOs

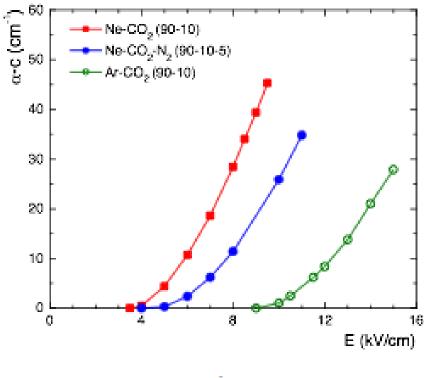
 \overline{V}_{REF} V_{REF+}


For required Signal-to-Noise ratio excellent noise figure of 670e⁻ (as currently) is needed

- All ADC values are read out: data output for 50 kHz Pb-Pb collisions ≈ 6.55 TByte/s
- Baseline correction and data compression off detector
- Use CERN developed GBT and Versatile Link for readout

RD51 Mini-Week, CERN Geneve 20th February 2018





Two-stage reconstruction scheme:

- Cluster finding, cluster to track association: 1 TB/s \rightarrow 50 GB/s, scaled averaged space charge distortion map
- Tracking, ITS-TRD track matching, high-resolution space-charge corrections for full distortion calibration \rightarrow O(200 µm) in r ϕ

Gas	v _d	DL	DT	ωτ	Wi	Np	Nt
	(cm/µs)	(√cm)	(√cm)		(eV)	(cm ⁻¹)	(cm ⁻¹)
Ne-CO2-N2 (90-10-5)	2.58	0.0221	0.0209	0.32	37.3	14.0	36.1
Ne-CO2 (90-10)	273	0.0231	0.0208	0.34	38.1	13.3	36.8
Ne-CF ₄ (90-10)	8.02	0.0152	0.0131	1.77	37.7	15.7	427
Ne-CF ₄ (80-20)	8.41	0.0131	0.0111	1.84	37.3	20.5	54.1
Ar-CO2 (90-10)	3.31	0.0262	0.0221	0.43	28.8	26.4	74.8

Gas Choices of the ALICE TPC:

- RUN 1: Ne-CO₂ (90-10) TPC with gating grid, space charges only from the primary ions produced in the drift volume
- Run 2: Ar-CO₂ (90-10)
 TPC with gating grid, focus on stability of operation
- RUN 3: Ne-CO₂-N₂ (90-10-5) TPC with GEM amplification system, focus on fast ion drift velocity v_{ion}(Ar) ~ 600 cm/s, v_{ion}(Ne) ~ 1600 cm/s, E_{trans} is in ~ 4 kV/cm (Townsend coefficient), increases probability for traversing discharges, limits the field settings