# FCC-he Update on SM Higgs Studies

### Uta Klein on behalf of the LHeC/FCC-eh Higgs Group



2<sup>nd</sup> FCC Physics Week 2018, CERN, January 16<sup>th</sup>, 2018

## SM Higgs Production in ep



### Total cross section [fb]

(LO QCD CTEQ6L1 M<sub>H</sub>=125 GeV)

| c.m.s. energy              | 1.3 TeV<br>LHeC | 3.5 TeV<br>FCC-he |
|----------------------------|-----------------|-------------------|
| CC DIS<br>NC DIS           | 109<br>21       | 560<br>127        |
| P=-80%<br>CC DIS<br>NC DIS | 196<br>25       | 1008<br>148       |

•Scale dependencies of the LO calculations are in the range of 5-10%.

• NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993][B.Jager, arXiv:1001.3789]

## VBF Higgs Production in ep (top)





**ep:** Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean bb final state, S/B >1 e-h Cross Calibration for Precision ep Clean, precise reconstruction and easy distinction of ZZH and WWH without pile-up:

<0.1@LHeC up to 1@FCCeh events

#### **VBF: Small theoretical uncertainties!**

**pp:** Higgs production in pp comes predominantly from  $gg \rightarrow H$ : high rates crucial for rare decays LHC VBF cross section about 200 fb (about as large as at the LHeC).

**Pile-up** in pp at 5 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> is 150@25ns FCC-hh: pile-up 500-1000 S/B very small for bb Final Precision in pp needs accurate N<sup>3</sup>LO PDFs &  $\alpha_{c}$ 



Uta & Max Klein, gHZZ in NC DIS

## Kinematics and M<sub>H</sub> : ee vs pe



## Some ILC Results



| 4-jet channel:              |
|-----------------------------|
| Signal eff.~67%             |
| and sample purity 4%        |
| $\rightarrow$ pre-selection |
| required trained NN         |

|                            |                 |                         | https://arxiv.org/abs/hep-ex/9912041v1                                                                          |
|----------------------------|-----------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Process                    | $\epsilon~(\%)$ | $\sigma_{\rm eff}$ (fb) | see also II C reference design report ·                                                                         |
| $ZH \rightarrow q\bar{q}H$ | 67.27           | 31.08                   |                                                                                                                 |
| $ZH \to \ell^+ \ell^- H$   | 1.48            | 0.10                    | https://arxiv.org/pdf/0709.1893.pdf                                                                             |
| $q\bar{q}$ (5 flavors)     | 6.76            | 290.96                  | The second se |
| $tar{t}$                   | 4.26            | 24.79                   |                                                                                                                 |
| $W^+W^-$                   | 5.00            | 391.07                  | SMALL signal cross sections                                                                                     |
| ZZ                         | 12.30           | 70.11                   | similar like in ep!                                                                                             |
| Total Bckg                 |                 | 747.03                  |                                                                                                                 |

Table 2: Hadronic channel preselection efficiencies and effective cross-sections.

$$ZH o \ell^+ \ell^- H, \ \ell = e, \mu : \quad (\Delta M_H)_{stat} \simeq 160 \text{ MeV}, \quad \left(\frac{\Delta g_{ZZH}}{g_{ZZH}}\right)_{stat} \simeq 3.8\%,$$
  
hadronic:  $ZH o q\bar{q}H : \quad (\Delta M_H)_{stat} \simeq 50 \text{ MeV}, \quad \left(\frac{\Delta g_{ZZH}}{g_{ZZH}}\right)_{stat} \simeq 0.7\%,$ 

assuming  $\int \mathcal{L}dt = 500 \text{ fb}^{-1}$  of integrated luminosity.

### **IMPORTANT LESSONs:**

It was found very important to use sophisticated tools like various Neural Networks and kinematic fitting of the Higgs mass;

And: it is crucial to reach high luminosity and excellent detector performance!

→ certainly very interesting to follow up for pe as well, but obviously non-trivial

### **Branching for invisible Higgs** Update of values given in case of 2 $\sigma$ and L=1 ab<sup>-1</sup>

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech



- Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
- Results for full MG5+Delphes analyses look very encouraging for a measurement of the branching of Higgs to invisible in ep down to 1.7% to 1.2% for 1 to 2 ab<sup>-1</sup>
- ✓ We also checked LHeC ← → FCC-he scaling with the corresponding cross sections (\* results in table) : Downscaling FCC-he simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1% → all well within uncertainties of projections of ~25%
- employ further synergies within LHC community and HL-LHC&FCC study group
  Jurther detector and analysis details have certainly an impact on results

## LHeC@HL-LHC: Higgs rates @ 1 ab<sup>-1</sup>

**Baseline:** For first time a realistic option of an 1  $ab^{-1}$  ep collider (stronger esource, stronger focussing magnets) and excellent performance of LHC (higher brightness of proton beam)  $\rightarrow$  full MG5 + Pythia + Delphes feasibility studies

➔ used for extrapolations to FCC-he

| _ |                    |                          |             |                                |                  |                                | ottimat     |
|---|--------------------|--------------------------|-------------|--------------------------------|------------------|--------------------------------|-------------|
|   | √s= <b>1.3 TeV</b> | LHeC Higgs               |             | $CC(e^-p)$                     | NC $(e^-p)$      | $\operatorname{CC}(e^+p)$      | e-beam      |
| _ |                    | Polarisation             |             | -0.8                           | -0.8             | 0                              | and LHC     |
|   |                    | Luminosity [             | $[ab^{-1}]$ | 1                              | 1                | 0.1                            | beams,      |
|   |                    | Cross Section            | n [fb]      | 196                            | 25               | 58                             | of opera    |
|   |                    | Decay Br                 | Fraction    | $\mathcal{N}_{CC}^{H} e^{-} p$ | $N_{NC}^H e^- p$ | $\mathcal{N}_{CC}^{H} e^{+} p$ |             |
|   |                    | $H \to b\overline{b}$    | 0.577       | 113 100                        | 13 900           | $3 \ 350$                      | → Deca      |
|   |                    | $H \to c\overline{c}$    | 0.029       | 5  700                         | 700              | 170                            | dom         |
|   |                    | $H \to \tau^+ \tau^-$    | 0.063       | $12 \ 350$                     | 1 600            | 370                            | deca        |
|   |                    | $H \to \mu \mu$          | 0.00022     | 50                             | 5                | —                              | <b>58</b> % |
|   | nn, porfoct        | $H \to 4l$               | 0.00013     | 30                             | 3                | —                              |             |
|   | <i>pp:</i> perfect | $H \rightarrow 2l 2 \nu$ | 0.0106      | $2\ 080$                       | 250              | 60                             | Higgs c     |
|   | Higgs              | $H \to gg$               | 0.086       | 16  850                        | 2050             | 500                            | charm       |
|   | factory for        | $H \rightarrow WW$       | 0.215       | 42  100                        | 5150             | $1 \ 250$                      |             |
|   | gluon-             | $H \to ZZ$               | 0.0264      | $5\ 200$                       | 600              | 150                            |             |
|   | induced            | $H \to \gamma \gamma$    | 0.00228     | 450                            | 60               | 15                             | than H      |
|   | rare decays        | $H \to Z\gamma$          | 0.00154     | 300                            | 40               | 10                             |             |
|   |                    |                          |             |                                |                  |                                |             |

Ultimate polarised e-beam of <u>60 GeV</u> and LHC 7 TeV pbeams, 10 years of operation

➔ Decay to bb is dominating decay mode : 58%

Higgs decay to charm is factor 20 less likely than Hbb

BDT:U Klein; Cut-based: M Kuze, M Tanaka

## Dijet Mass Candidates HFL untagged



'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100%! → However, addition of small angle electron taggers will reduce PHP to ~1-2%



- → Realistic and conservative HFL tagging within Delphes realised, and dependence on vertex resolution (nominal 10 µm) and anti-kt jet radius studied
- → Light jet rejection very conservative, i.e. factor 10 worse than ATLAS
- → used in full LHeC analysis and for FCC-eh extrapolations

# **HFL Tagging**

## Uta Klein & Daniel Hampson



Light Jet Efficiency 10

## **BDT Results for Higgs @ LHeC**

Uta Klein & **Daniel Hampson** 

Signal Events Hbb

Hbb : Clear sensitivity to chosen jet radius; rather robust w.r.t. vertex resolution in range of 5 to 20 µm

700 Siganl

600

500

400

300

200

100





## LHC: First 3<sub>o</sub> Hbb Evidence!

ATLAS, Aug 2017, sub. to JHEP

- https://arxiv.org/abs/1708.03299
- use Higgs→bb in associated production with a W or Z boson
- explore various final states (e.g.  $Z \rightarrow vv$ ,  $W \rightarrow |v, Z \rightarrow ||$  categories)
- Run-I and II combined, S/B-weighted categories : μ=0.9±0.28(stat+syst)





- ✓ Encouraging result for HL-LHC prospects
- ✓ Very encouraging for prospects in ep that we can handle S/B ~10<sup>-3</sup> processes with sophisticated analysis techniques

Hbb expectation @ LHeC for 36 fb<sup>-1</sup> (½ year data): δμ~7-8% with significance of ~14

# SM Higgs into HFL Summary

- Assume a 60 GeV polarized electron beam and 1000 fb<sup>-1</sup> (~10 years running)
- Expected number of signal events and error of coupling constant from BDT results.
- Background assumed to be known to ~2%



# LHeC Precision Partons for Higgs@pp

→ <u>Using LHeC input</u>: experimental uncertainty of predicted LHC Higgs

**cross section due to PDFs and** α<sub>s</sub> is strongly **reduced to <~0.5%** 

- → theoretically clean path to determine N<sup>3</sup>LO PDFs using ep DIS
- $\rightarrow$  ALL those 'benefits' for pp within the first few years, using ~100 fb<sup>-1</sup> ep data



NNLO pp—Higgs Cross Sections at 14 TeV

→ precision from LHeC can add a very significant constraint on the Higgs mass and challenge Lattice QCD calculations for  $\alpha_s$ :



## **Higgs Couplings at pp + ep** After HL-LHC and LHeC running in parallel for 10 years



**Uncertainty on pp Higgs cross section** 

Giulia Zanderighi, Vietnam 9/16, from C.Anastasiou et al, 1602.00695 who also discuss the ABM alpha\_s..



Already with the first ~100 fb<sup>-1</sup>

- → use ep as the 'near' detector for pp to beat the α<sub>s</sub> and PDF uncertainties from ~3% to <~0.5%,</li>
   → δm<sub>b</sub> to 10 MeV;
  - $\delta m_{charm}$  to 3 MeV

Uta & Max Klein, Contribution to FCC Workshop, 16.1.2018, preliminary

## **New: Estimates of Higgs Prospects**

- Use LO Higgs cross sections σ<sub>H</sub> for M<sub>H</sub>=125 GeV, in [fb], and branching fractions BR(H→XX from Higgs Cross Section Handbook (c.f. appendix)
- Apply further branching, BR(X→FS) in case e.g. of W→ 2 jets and use acceptance, Acc, estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiV:1511.05170
- Use fully simulated LHeC Hbb and Hcc results as baseline for S/B ranges
- Use fully simulated Higgs to invisible for 3 ep c.m.s. scenarios as guidance for extrapolation uncertainty (~25%)
- Estimate HIggs events per decay channel for certain Luminosity in [fb<sup>-1</sup>]

$$N = \sigma_{_H} \bullet BR(H \to XX) \bullet BR(X \to FS) \bullet L$$

• Calculate uncertainties of signal strengths w.r.t. SM expectation

$$\frac{\delta\mu}{\mu} = \frac{1}{\sqrt{N}} \bullet f$$
 with  $f = \sqrt{\frac{1+1/(S/B)}{Acc \bullet \varepsilon}}$ 

 $\mu$  = -

# CC DIS WWH $\rightarrow$ H

#### FCC-he L=2 ab<sup>-1</sup>

|                                                      | bb                   | ww                         | gg                          | ττ                          | СС                  | ZZ                         | γγ      |
|------------------------------------------------------|----------------------|----------------------------|-----------------------------|-----------------------------|---------------------|----------------------------|---------|
| BR                                                   | 0.577                | 0.215                      | 0.086                       | 0.0632                      | 0.0291              | 0.0264                     | 0.00228 |
| $\delta \text{BR}_{\text{theory}}$                   | 3.2%                 | 4.2%                       | 10.1%                       | 5.7%                        | 12.2%               | 4.2%                       | 5.0%    |
| Ν                                                    | 1.15 10 <sup>6</sup> | <b>4.3 10</b> <sup>5</sup> | <b>1.72 10</b> <sup>5</sup> | <b>1.26 10</b> <sup>5</sup> | 5.8 10 <sup>4</sup> | <b>5.2</b> 10 <sup>4</sup> | 4600    |
| f                                                    | 2.86 <sub>BDT</sub>  | 16                         | 7.4                         | 5.9                         | 5.6 <sub>BDT</sub>  | 8.9                        | 3.23    |
| δμ/μ [%]                                             | 0.27                 | 2.45                       | 1.78                        | 1.65                        | 2.36                | 3.94                       | 3.23    |
| $\delta \kappa = \frac{1}{2} \frac{\delta \mu}{\mu}$ | 0.14                 | 0.61*                      | 0.89                        | 0.83                        | 1.18                | 1.97                       | 2.37    |



→ Sum of first 6 branching fractions that could be measured
 LHeC : 0.9964 +- 0.02
 FCChe: 0.9964 +- 0.01
 pp: < 0.99 → cc? gg?</li>

Further coupling constraints to be explored:  $\sigma(WW \to H \to WW) \propto \kappa^{4}(HWW)$   $\sigma(WW \to H \to bb) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hbb)$   $\sigma(WW \to H \to \tau\tau) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(H\tau\tau)$   $\sigma(WW \to H \to gg) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hgg)$   $\sigma(WW \to H \to cc) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(Hcc)$   $\sigma(WW \to H \to ZZ) \propto \kappa^{2}(HWW) \cdot \kappa^{2}(HZZ)$ Note:  $\sigma(ZZ \to H \to WW) \propto \kappa^{2}(HZZ) \cdot \kappa^{2}(HWW)_{18}$  Uta & Max Klein, Contribution to FCC Workshop, 16.1.2018, preliminary

## Higgs SM Coupling Prospects: pe+pp



**HL LHC**: ATLAS-PUB-2014-016 14 TeV  $3ab^{-1}$  – LHC has no gg, no cc, and poor bb, but rare channels as  $\gamma\gamma$  **LHeC**:  $1ab^{-1}$ , 60 GeV x 7 TeV - Work in progress. ep also provides precise: xg,  $\alpha_s$  and PDFs to N<sup>3</sup>LO.. **LHC (ep+pp)**: HL LHC with reduced theory uncertainty combined with LHeC –**running in parallel FCCeh**:  $2ab^{-1}$ , 60 GeV x 50 TeV - Work in progress. ep also provides precise: xg,  $\alpha_s$  and PDFs to N<sup>3</sup>LO..

Improvements: ATLAS 2014 conservative, no CMS. ep (LHeC/FCCeh) are overconstrained: CC+NC, ratios, sum(br)=1..  $\rightarrow$  joint coupling determination: especially WW and ZZ should improve

## Please take home:

- We just got a first glance on the exciting combined ep+pp Higgs potential to constrain the sum of most important SM Higgs branching fractions to 1+-1%, i.e. with a precision of the dominant couplings to sub-percent level.
- An ep collider would complement the most powerful pp machines by providing invaluable high precision proton structure data required for high precision PDF, α<sub>s</sub> and N<sup>3</sup>LO.
- <u>For the FCC CDR :</u> Quantify in a consistent way the joint Higgs coupling measurement potential

→ fix the assumptions and benchmark, e.g. add also ttH and HH

 $\rightarrow$  pp: use ep PDFs and  $\alpha_s$  to estimate error reduction

→ combined analysis of pp and ep cross sections to constrain SM (and BSM) Higgs scenario's and to design the <u>most powerful and</u> <u>sustainable</u> search complex at the energy frontier.

## Additional Sources & Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN <u>https://indico.cern.ch/event/639067/</u>
- The LHeC/FCC-eh study group, <u>http://cern.ch/lhec</u>.
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- 1<sup>st</sup> FCC Physics Workshop, 16.1.-20.1.2017, CERN <u>https://indico.cern.ch/event/550509/</u>
- Higgs branching fractions and uncertainties taken from : <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u> <u>CERNYellowReportPageBR2014</u>

Special thanks to my colleagues in the LHeC/FCC-eh Higgs group, the project leader Max Klein, our detector expert Peter Kostka, and our biweekly Higgs-top working group discussions.

## Additional material

## **Analysis Framework**

### **Event generation**

- SM or BSM production
- CC & NC DIS background
- by MadGraph5/MadEvent



- Hadronization
  - by PYTHIA (modified for ep)

### Fast detector simulation by Delphes

 $\rightarrow$  test of FCCeh detector

S/B analysis  $\rightarrow$  cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using <u>pT of scattered quark</u> <u>as scale (CDR ŝ )</u> for ep processes with MadGraph5
- Standard HERA tools can NOT to be used !
- Higgs mass 125 GeV as default
- Fragmentation & hadronisation uses epcustomised Pythia.
- Delphes 'detector' → displaced vertices and signed impact parameter distributions → studied for LHeC, and used for FCC-eh SM Higgs extrapolations
- powerful method to optimise detector tuning and S/N for various Higgs, top and BSM decays
- Ongoing : Integration of FCCeh into FCC simulation framework

## SM Higgs Decay into b-quarks

• Typical background processes



## Invisible Higgs@LHeC relating the Higgs and the 'dark' sectors

HL-LHC @ 3 ab<sup>-1</sup> [arXiv:1411. 7699] Br $(h \rightarrow \not\!\!\!\!E_T)$  < 3.5% @95% C.L., MVA based For LHeC, assume : 1ab<sup>-1</sup>, P<sub>e</sub>=-0.9, <u>cut based</u> Br $(h \rightarrow \not\!\!\!E_T)$  < 6% @ 95 % C.L.

 $\xrightarrow{} \mathcal{L}_T ) \xrightarrow{} \mathcal{C}_{\text{MET}} = \kappa_Z^2 \times \text{Br}(h \to \not\!\!E_T)$ 







- ➔ potential much enhanced for FCC-eh @ 3.5 TeV and HE-LHC-eh @ 1.8 TeV
- NEW studies performed on Delphes detectorlevel using our Madevent framework