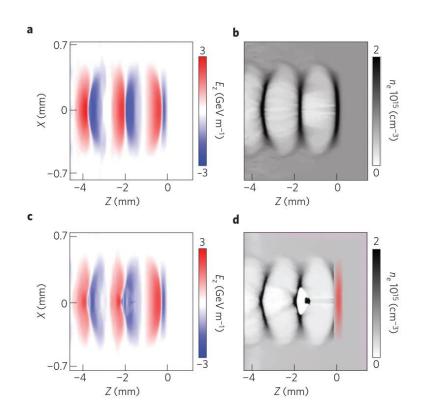
Summary of Paper Studies on AWAKE and the Electron Injection Schemes

Hossein Saberi

General Points

Presentation is summary of published papers

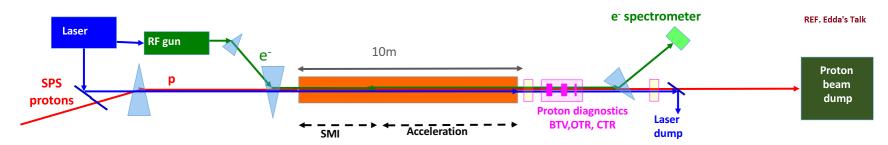

It might be repetitive for you!

Your comments help to better involve the project

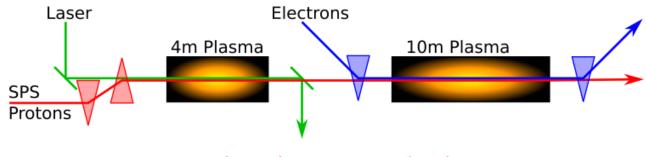
- PDPWA and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

A. Caldwell et al, Nat. Phys. 5, 363 (2009)

- Wakefield Generation:
 - Interaction of small, energetic proton bunch
 - Plasma electrons being 'sucked in' by the p-bunch.
 - The electrons move across the beam axis and create a depletion region
- Electron acceleration:
 - In simulation, electron witness bunch is placed on the left edge of the first bubble
 - They show a 10 GeV electron bunch accelerates to near 1 TeV.

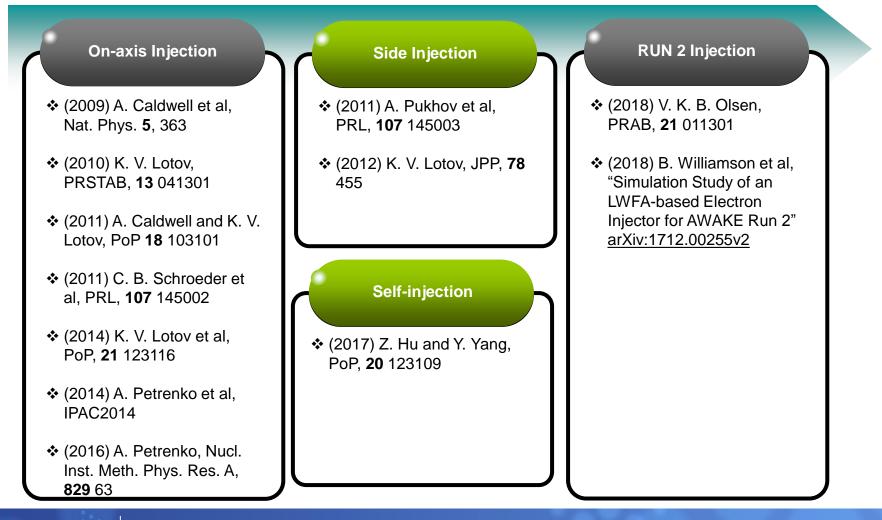

Self-Modulation Instability (SMI)

- N. Kumar et al, PRL **104** 255003 (2010)
 - A long proton bunch generates a wake inside its body which modulates the bunch itself.
 - The SMI of the proton beam can be used for TeV regime of electron acceleration.


But how inject electrons to the Wakefield of modulated proton bunch?

AWAKE Experiment: Electron Injection

AWAKE RUN 1



AWAKE RUN 2

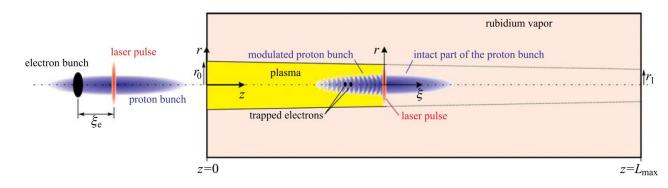
V. K. B. Olsen et al, PRAB 21, 011301 (2018)

Classification of Papers vs. Injection Schemes

Summary of Paper Studies on AWAKE and the Electron Injection Schemes

- PDPWA and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

C. B. Schroeder et al, PRL, 107 145002 (2011)


- The studied SMI and the electron acceleration:
 - The phase velocity of the wake is less than the beam velocity.
 - The energy gain of the electrons is limited by dephasing.
- Ideas to improve the efficiency of PDPWA
 - Tapering the plasma density:
 - Increase plasma density → reduce plasma wavelength → increase phase velocity
 - Use a staged approach:
 - Stage 1 for SMI → Stage 2 for electron injection into the modulated drive beam

K. V. Lotov et al, *PoP*, **21** 123116 (2014) A. Petrenko et al, IPAC2014 (2014)

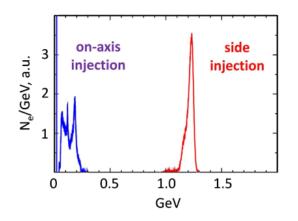
- Simulation with LPIC and OSIRIS
 - On-axis injection of electrons
- Main Results:
 - The witness beam must co-propagate with the tail part of the driver
 - The trapped charge is limited by the beam loading effect

TABLE I. Baseline AWAKE parameters and notation

Parameter, notation	Value
Plasma density, n_0	$7 imes 10^{14}\mathrm{cm^{-3}}$
Plasma length, L_{max}	10 m
Atomic weight of plasma ions, M_i	85.5
Plasma skin depth, $c/\omega_p \equiv k_p^{-1}$,	0.2 mm
Initial plasma radius, r_0 ,	1.5 mm
Final plasma radius, r_1 ,	1 mm
Wavebreaking field, $E_0 = mc\omega_p/e$,	2.54 GV/m
Proton bunch population, N_b	3×10^{11}
Proton bunch length, σ_{zb}	12 cm
Proton bunch radius, σ_{rb}	0.2 mm
Proton bunch energy, W_b	400 GeV
Proton bunch energy spread, δW_b	0.35%
Proton bunch normalized emittance, ϵ_{nb}	3.6 mm mrad
Proton bunch maximum density, n_{b0}	$4 imes 10^{12}\mathrm{cm}^{-3}$
Electron bunch population, N_e	1.25×10^{9}
Electron bunch length, σ_{ze}	1.2 mm
Electron bunch radius, σ_{re}	0.25 mm
Electron bunch energy, W_e	16 MeV
Electron bunch energy spread, δW_e	0.5%
Electron bunch normalized emittance, ϵ_{ne}	2 mm mrad
Electron bunch delay, ξ_e	16.4 cm

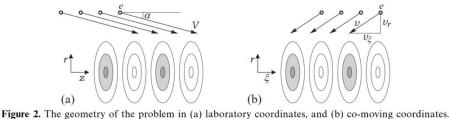
A. Petrenko, Nucl. Inst. Meth. Phys. Res. A, 829 63 (2016)

- Simulation with LPIC
 - On-axis injection of electrons
 - Consider constant plasma density gradient
- Main Results:
 - With a <u>positive</u> plasma density gradient up to 10% along 10 m plasma, electrons can be accelerated to high energies (> GeV)
 - The <u>negative</u> plasma density gradient will reduce the electrons energy gain.


- PDPWA and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

A. Pukhov et al, PRL, **107** 145003 (2011)

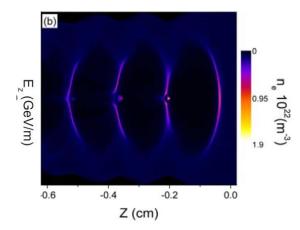
- The studied SMI and the electron acceleration
 - Phase velocity reduction is proportional to the growth rate: $v_{ph} = v_b \left[1 \frac{2}{3\sqrt{3}} \frac{\Gamma}{\omega_p}\right]$
 - In the linear stage of SMI the reduction of phase velocity is largest.
 - As the instability non-linearly saturates, the phase velocity approaches that of the driver.
- How to overcome dephasing issue:
 - Side-injection of electrons to regions where the instability is saturated
 - Smooth plasma density gradient to control the wake's phase velocity


A. Pukhov et al, PRL, 107 145003 (2011)

- Electron Side Injection
 - Electron bunch propagates at small angle with respect to the proton bunch
 - Electrons are gradually sucked-in at the right phase by the wake transverse field.
- Simulation result

K. V. Lotov, JPP, 78 455 (2012)

- Theoretical study of electron injection to the linear plasma Wakefield
 - 2D theory for side injection
 - Optimum angle for side injection
- Consider side injection of electron to Wakefield potential
 - Co-moving frame


righte 21 The geometry of the problem in (a) moonatory coordinates, and (b) to moving coordinates.

- Wakefield potential at large radii → electron's radial equation of motion
- Radial motion can be investigated numerically to obtain the optimum angle

- PDPWA and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

Z. Hu and Y. Yang, PoP, 20 123109 (2017)

- Simulating self-injection by a 2D EM PIC Code
- Results
 - Electrons are self injected into the back of the first acceleration bucket
 - Self-injected electrons are initially located within a distance of the <u>skin depth</u>
 - When the wake's phase velocity increases the electron self injection terminates leading to a monoenergetic electron bunch.

- Proton-driven Wakefield and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

V. K. B. Olsen, *PRAB*, **21** 011301 (2018)

- Beam loading in quasi linear plasma Wakefield for AWAKE RUN 2:
 - Simulation with QuickPIC
 - By properly choosing the electron beam parameters considering the beam loading effect, the electron gains large amount of energy without significant emittance growth.

B. Williamson et al, <u>arXiv:1712.00255v2</u> (2018)

- Simulation Study of an LWFA-based Electron Injector for AWAKE Run 2
 - Simulation with EPOCH
 - A set of laser and plasma parameters for a shock-front injected LWFA have been investigated as a possible electron injector for Run 2 at the AWAKE experiment.

- PDPWA and Electron Injection
- Electron On-axis Injection- [Plasma Density Gradient]
- Electron Side Injection
- Electron Self Injection
- RUN 2 Electron Injection
- Discussion

How to Proceed?

- Experiment
 - RUN 1
 - RUN 2
- Theoretical Model
 - As I understand, there is not a comprehensive model in the literature
 - Which model should choose?
- Numerical Simulation
 - In 3D, it can help to explore electron injection and acceleration.
 - Using simulation codes, NEXT slide

Simulation Codes

Name	About the Code
LPIC	 freely-distributed code for simulations of particle beam-driven plasma Wakefield acceleration, 2-dimensional (2d3v), with both plane and axisymmetric geometries
OSIRIS	 Fully explicit, multi-dimensional, parallelized, relativistic, PIC code Not free
QuickPIC	 open-source Fully relativistic 3D quasi-static PIC code
WARP	 open-source electrostatic and electromagnetic PIC Python package Self-consistent simulation of <u>space-charge dominated beams</u>, particle injection and electron-cloud effects in realistic geometries models ranging from <u>full 3D</u>, transverse slice x-y (including p_z), and axisymmetric r-z (including p_{theta}), as well as simple beam envelope models useful for problem setup
WARP-X	 U.S. DOE Exascale Computing Project for advanced accelerators Coupling of WARP+BoxLib/AMReX+PICSAR Ultimate goal: enable modelling of 100 stages of plasma accelerators by 2025 for 1 TeV collider design! will be open source and make available to the public toward the end of 2018.
EPOCH	 MPI parallelised, explicit, second-order, relativistic PIC code.

In the case of simulation, which code is better to use?

Thank you

C. B. Schroeder et al, PRL, 107 145002 (2011)

- Theoretical study of SMI of a long relativistic particle beam in plasma
 - Cold plasma fluid + Maxwell's equations
 - Assumptions:
 - Linear wake regime
 - Highly relativistic drive beam
 - Quasi-static approximation
 - Obtain the envelope equation for the drive beam radius
 - Consider small perturbation \rightarrow equation for the evolution of the beam radius perturbation
 - instability growth rate
 - Phase velocity → dephasing length

A. Pukhov et al, PRL, 107 145003 (2011)

- Theory to study SMI
 - Envelope description of the driver
 - Long and thin proton bunch → equation of bunch's radius
 - − Linear perturbation theory → dispersion relation
 - Obtain the instability growth rate

- Phase velocity
$$v_{ph} = v_b [1 - \frac{2}{3\sqrt{3}} \frac{\Gamma}{\omega_p}]$$

- 3D PIC Simulation
 - Hybrid code VLPL3D
 - Simulate background plasma hydrodynamically,
 - High energy bunches are fully kinetic