

European Research Council

## Testing reliability of the soft-gluon approximation in calculating radiative energy loss of high p\_ particles





Bojana Blagojevic Institute of Physics Belgrade University of Belgrade



институт за физику Београд институт од националног значаја за републику србију

## The soft-gluon approximation

- The soft-gluon approximation (sg) definition radiated gluon carries away a small fraction of initial jet energy  $x = \frac{\omega}{r} \ll 1$ .
- Widely-used assumption in calculating radiative energy loss of high p<sub>⊥</sub> particle traversing QGP

ASW (PRD, 69:114003), BDMPS (NPB, 484:265), BDMPS-Z (JETP Lett., 65:615), GLV (NPB 594:371), HT (NPA 696:788);

M. Djordjevic, PRC, 80:064909 (2009), M. Djorjevic and U. Heinz, PRL, 101:022302 (2008)

# Why do we reconsider the soft-gluon approximation validity?

- Significant medium induced radiative energy loss obtained by different models  $\rightarrow$  inconsistent with sg approximation?
- Sg approximation also used in our Dynamical energy loss formalism.
- Our dynamical energy loss model reported robust agreement with extensive set of experimental  $R_{AA}$  data  $\rightarrow$  implies model reliability

(M. Djordjevic and M. D. PLB 734:286 (2014), PRC 90:034910 (2014),

M. Djordjevic, M. D. and B. Blagojevic PLB 737:298 (2014); M. Djordjevic PRL 112:042302 (2014)

M. Djordjevic and M. D. PRC 92:024918 (2015))

- It breaks-down for:
  - 5 < p⊥ < 10 GeV
  - Primarily for gluon energy loss

## **Relaxing the soft-gluon approximation**

 Beyond soft-gluon approximation (*bsg*) in DGLV: *x* finite <u>DGLV formalism assumes:</u>

### Finite size (L) optically thin QGP medium

**Static color-screened Yukawa potential:** 

(M. Gyulassy, P. Levai and I. Vitev, NPB 594:371 (2001))

**Static scattering centers** 
$$V_n = 2\pi\delta(q_n^0)\nu(\vec{q}_n)e^{-i\vec{q}_n\cdot\vec{x}_n}T_{a_n}(R)\otimes T_{a_n}(n)$$

$$\nu(\vec{q}_n) = \frac{4\pi\alpha_s}{\vec{q}_n^2 + \mu^2}$$

Gluons as transversely polarized partons with effective mass  $m_g = \mu/\sqrt{2}$ 

(M. Djordjevic and M. Gyulassy, PRC 68:034914 (2003))



- Initial gluon propagates along the longitudinal axis
- The soft-rescattering (eikonal) approximation
- The 1<sup>st</sup> order in opacity approximation

(M. Gyulassy, P. Levai and I. Vitev, PLB 538:282 (2002))



$$\begin{split} M_{2,2,0}^{c} &= -J_{a}(p+k)e^{i(p+k)x_{0}}(T^{c}T^{a_{2}}T^{a_{1}})_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{2}} \\ &\times \frac{1}{2}(2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-x(\mathbf{q}_{1}+\mathbf{q}_{2}))}{(\mathbf{k}-x(\mathbf{q}_{1}+\mathbf{q}_{2}))^{2}+\chi}e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})} \end{split}$$

$$\begin{split} M_{2,0,3}^{c} &= J_{a}(p+k)e^{i(p+k)x_{0}}[[T^{c},T^{a_{2}}],T^{a_{1}}]_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}}\\ &\times \frac{1}{2}(2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})}{(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\chi}\Big(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})}-e^{\frac{i}{2\omega}(\mathbf{k}^{2}-(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2})(z_{1}-z_{0})}\Big)\end{split}$$

$$\begin{split} M_{2,0,0}^c &= J_a(p+k)e^{i(p+k)x_0}(T^{a_2}T^{a_1}T^c)_{da}T_{a_2}T_{a_1}(1-x+x^2)(-i)\int \frac{d^2\mathbf{q}_1}{(2\pi)^2}(-i)\int \frac{d^2\mathbf{q}_2}{(2\pi)^2}v(0,\mathbf{q}_1)v(0,\mathbf{q}_2)e^{-i(\mathbf{q}_1+\mathbf{q}_2)\cdot\mathbf{b}_1} \\ &\times \frac{1}{2}(2ig_s)\frac{\boldsymbol{\epsilon}\cdot\mathbf{k}}{\mathbf{k}^2+\chi}\Big(e^{\frac{i}{2\omega}(\mathbf{k}^2+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_1-\mathbf{q}_2)^2+\frac{\chi}{1-x})(z_1-z_0)} - e^{\frac{i}{2\omega}\frac{x}{1-x}((\mathbf{k}-\mathbf{q}_1-\mathbf{q}_2)^2-\mathbf{k}^2)(z_1-z_0)}\Big) \end{split}$$

$$\begin{split} M_{2,0,1}^{c} &= J_{a}(p+k)e^{i(p+k)x_{0}}(T^{a_{2}}[T^{c},T^{a_{1}}])_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}}\\ &\times (2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_{1})}{(\mathbf{k}-\mathbf{q}_{1})^{2}+\chi}\Big(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{\pi}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\gamma}{1-x})(z_{1}-z_{0})}-e^{\frac{i}{2\omega}(\mathbf{k}^{2}-\frac{(\mathbf{k}-\mathbf{q}_{1})^{2}}{1-x}+\frac{\pi}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2})(z_{1}-z_{0})}\Big)\end{split}$$

$$\begin{split} M_{2,0,2}^{c} &= J_{a}(p+k)e^{i(p+k)x_{0}}(T^{a_{1}}[T^{c},T^{a_{2}}])_{da}T_{a_{2}}T_{a_{1}}(1-x+x^{2})(-i)\int \frac{d^{2}\mathbf{q}_{1}}{(2\pi)^{2}}(-i)\int \frac{d^{2}\mathbf{q}_{2}}{(2\pi)^{2}}v(0,\mathbf{q}_{1})v(0,\mathbf{q}_{2})e^{-i(\mathbf{q}_{1}+\mathbf{q}_{2})\cdot\mathbf{b}_{1}} \\ &\times (2ig_{s})\frac{\boldsymbol{\epsilon}\cdot(\mathbf{k}-\mathbf{q}_{2})}{(\mathbf{k}-\mathbf{q}_{2})^{2}+\chi} \Big(e^{\frac{i}{2\omega}(\mathbf{k}^{2}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2}+\frac{\chi}{1-x})(z_{1}-z_{0})} - e^{\frac{i}{2\omega}(\mathbf{k}^{2}-\frac{(\mathbf{k}-\mathbf{q}_{2})^{2}}{1-x}+\frac{x}{1-x}(\mathbf{k}-\mathbf{q}_{1}-\mathbf{q}_{2})^{2})(z_{1}-z_{0})}\Big) \end{split}$$

Symmetric under the exchange of radiated (k) and final gluon (p).

Two interactions with QGP medium

Recovers *sg* result for  $x \ll 1$ .

Two negligible amplitudes are omitted.



B. Blagojevic, M. Djordjevic and M. Djordjevic, arXiv:nucl-th\1804.07593

# Comparison of <u>analytical expressions</u> $\left(\frac{dN_g^{(1)}}{dx}\right)$



## Comparison of <u>numerical predictions</u> between *bsg* and *sg*

- 1. Fractional radiative energy loss  $\Delta E^{(1)}/E$  and number of radiated gluons  $N_g^{(1)}$
- 2. Fractional differential radiative energy loss  $\frac{1}{E} \frac{dE^{(1)}}{dx}$  and single gluon radiation spectrum  $\frac{dN_g^{(1)}}{dx}$
- 3. Angular averaged nuclear modification factor  $R_{AA}$

## Effect of relaxing sga on integrated variables



## Effect of relaxing sga on differential variables



## **Computational formalism for <u>bare gluon</u> suppression**



# Initial gluon p⊥ spectrum Radiative energy loss

### Gluon production

(Z.B. Kang, I. Vitev and H. Xing, PLB 718:482 (2012); R. Sharma, I. Vitev and B.W. Zhang, PRC 80:054902 (2009))

 Radiative energy loss in finite size static QGP medium *beyond soft gluon approximation*

(B. Blagojevic, M. Djordjevic and M. Djordjevic, arXiv:nucl-th/1804.07593 (2018))

### Multi-gluon fluctuations

(M. Gyulassy, P. Levai and I. Vitev, PLB 538:282 (2002))

### • Path-length fluctuations

(S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, NPA 784:426 (2007); A. Dainese, EPJ C 33:495 (2004))

## Effect of relaxing sga on R<sub>AA</sub>



- 1. Why is  $R_{AA}$  barely affected by this relaxation?
- 2. How the large differential variables discrepancies between bsg and sg cases at x > 0.4 do not influence R<sub>AA</sub>?

## **Explanation of negligible effect on R<sub>AA</sub> (1)**



## Explanation of negligible effect on $R_{\Delta\Delta}$ (2)



16

 $1 dE^{(1)}$ 

 $\overline{E} \frac{dx}{dx}$  are

## **Conclusions and outlook**

Different theoretical models reported considerable radiative energy loss questioning the validity of the soft-gluon approximation.

We relaxed the approximation for high  $p_{\perp}$ gluons, which are most affected by it, within DGLV formalism, and although analytical results differ to a great extent in *bsg* and *sg* cases, surprisingly the numerical predictions were nearly indistinguishable.

Consequently, this relaxation should have even smaller impact on high  $p_{\perp}$  quarks.

This implies that soft gluon approximation is reliable within DGLV formalism

We expect that the soft-gluon approximation will remain well-founded within the dynamical energy loss formalism, which needs to be rigorously tested in the future.

# Thank you for your attention!

B. Blagojewic, M. Djordjevic and M. Djordjevic, arXiv:nucl-

# **BACK-UP**

## **Generalization on dynamical medium**

- Implicitly suggested by robust agreement of our  $R_{AA}$  predictions with experimental data
- Only  $f(\mathbf{k}, \mathbf{q}, \mathbf{x})$  depends on  $\mathbf{x}$
- f(k, q, x) in soft-gluon approximation is the same in static and in dynamical case

We expect dynamical f(k, q, x) to be modified in the similar manner to the static (DGLV) case.



B. Blagojevic, M. Djordjevic and M. Djordjevic, arXiv:nucl-th\1804.07593

#### Longitudinal initial gluon direction:

No interactions with QGP  $\begin{bmatrix} I \\ I \end{bmatrix}$  One interaction with QGP medium (M<sub>1</sub>)  $\begin{bmatrix} I \\ I \end{bmatrix}$  Two interactions with QGP medium (M<sub>2</sub>) medium ( $M_0$ )  $p + k = [E^+, E^-, \mathbf{0}]$   $p + k - q_1 = [E^+ - q_{1z}, E^- + q_{1z}, \mathbf{0}]$   $p + k - q_1 - q_2 = [E^+ - q_{1z} - q_{2z}, E^- + q_{1z} + q_{2z}, \mathbf{0}]$  $k = [xE^+, \frac{k^2 + m_g^2}{xE^+}, k]$   $p = [(1-x)E^+, \frac{p^2 + m_g^2}{(1-x)E^+}, p]$ Transverse momenta: p+k=0Transverse momenta:  $p_r + k \neq 0$ Transverse momenta: p + k = 0in contact-limit **Consistent with longitudinal** propagation of initial particle!

Transverse gluon polarization: $n^{\mu} = [0,2,0]$  $\epsilon_i(k) = [0, \frac{2\epsilon_i \cdot \mathbf{k}}{xE^+}, \epsilon_i],$  $\epsilon(k) \cdot k = 0,$  $\epsilon(k) \cdot n = 0,$  $\epsilon(k)^2 = -1,$  $\epsilon(p+k) \cdot (p+k) = 0,$  $\epsilon(p+k) \cdot n = 0,$  $\epsilon_i(p) = [0, \frac{2\epsilon_i \cdot \mathbf{p}}{(1-x)E^+}, \epsilon_i],$  $\epsilon(p) \cdot p = 0,$  $\epsilon(p) \cdot n = 0,$  $\epsilon(p)^2 = -1,$  $\epsilon(p+k)^2 = -1.$ B. Blagojevic, M. Djordjevic and M. Djordjevic, arXiv:nucl-th\1804.07593



#### Uniform longitudinal distance distribution

$$m_g = m_\infty = \sqrt{\Pi_T(p_0/|\vec{\mathbf{p}}|=1)} = \mu_E/\sqrt{2}$$

#### Effective gluon mass

### (M. Djordjevic and M. Gyulassy, PRC 68:034914 (2003))



Non-relevance of x > 0.4 region for the importance of relaxing the soft-gluon approximation



M. Djordjevic, PRL,112:042302 (2014).