Study of in-medium energy loss with heavyflavour correlations in pp and Pb-Pb collisions with ALICE at the LHC

Samrangy Sadhu VECC, Kolkata on behalf of the ALICE collaboration

Hot Quarks 2018, 7th to 14th Sept., 2018

Physics motivation : Why do we study heavy flavour?

- Heavy quarks with their heavy masses: charm, m_c ~ 1.3 GeV/ c^2 and bottom, $m_b \sim 4.2$ GeV/ c^2 .
- Predominantly produced by parton-parton hard scattering in the early stages of the collision ->
 Experience the complete evolution of QGP medium: Production time: t_Q = 1/2m_Q ≤ 0.1 fm/c.
- Produced due to hard scattering -> perturbative QCD can be applied.
- **QCD energy loss is expected to occur via both**
 - Inelastic (radiative energy loss via mediuminduced gluon radiation) and
 - Elastic (collisional energy loss) processes.

Therefore, heavy quarks act as important tools for characterizing the medium formed in heavy-ion collisions.

Physics motivation : Open heavy flavour in Pb-Pb collisions

- Contribute to the collective motion inside the system -> provide information on medium transport properties.
- In charm sector, ALICE has observed:

-> A significant suppression (factor 4-5) of D-meson production for p_{τ} > 5 GeV/*c* in central Pb-Pb collisions with respect to pp and p-Pb collisions, indicating charm quark energy loss due to interactions with the medium constituents.

-> Positive elliptic flow (v_2) for D mesons in semi-central collisions (30-50%), for $2 < p_T < 6$ GeV/*c*, suggesting that charm quarks participate to the collective motion of the medium. Phys. Rev. C 90 (2014) 034904

3

Physics motivation : Open heavy flavour in small systems

p-Pb collisions:

Heavy-flavour production and kinematic properties can be modified by:

- Cold nuclear matter effects, like shadowing, gluon saturation/color glass condensate, Cronin effect, possible energy loss mechanisms.
- "Collective-like" effects (e.g. elliptic flow), which resembles the observations from heavy-ion collisions.

pp collisions:

- Test and set constraints on production mechanisms

 Production cross section can be treated
 perturbatively due to the large Q² involved
 pQCD-based calculations describe reasonably
 well open charm and beauty production at the LHC
- Probe parton distribution function (especially for gluons) at low values of Bjorken x
- Reference for studies in p-Pb and Pb-Pb collisions

Hot Quarks, 2018

Eur. Phys. J. C77 (2017) 550

Physics motivation: Heavy-flavour correlations

Azimuthal correlations of heavy-flavour particles or heavy-flavour decay electrons with charged hadrons are important to study :

In Pb-Pb collisions:

- Energy loss of heavy-flavour partons.
- Possible modification of jet fragmentation in QCD medium.

In p-Pb collisions:

- Investigate possible modifications of angular correlation pattern due to cold nuclear matter effects.
- Search for long-range ridge-like structure observed in di-hadron correlations, also in the heavy-flavour sector, possibly due to initial (e.g. CGC) or final (e.g. hydrodynamics) state effect.

In pp collisions:

- Investigate heavy-flavour quark fragmentation properties and characterize heavy-flavour jets.
- Sensitivity in modelling of HQ processes.
- Reference of p-Pb and Pb-Pb collisions.

ALICE apparatus

Azimuthal correlation of D mesons and charged particles

Data sample:

pp, $\sqrt{s} = 13$ TeV (2016 data), 437M minimum-bias events pp, $\sqrt{s} = 7$ TeV (2010 data), 314M minimum-bias events p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV (2016 data), 602M minimum-bias events

Talk by Marianna Mazzilli : Multiplicity and centrality dependent azimuthal correlation studies on 12.09.2018

ALICE • Reconstruction of D mesons

Analysis Strategy

Reconstruction is based on the secondary vertex which is displaced from the primary vertex of the collision

Decay Channel	Branching Ratio
D ⁰ -> K ⁻ π ⁺	3.88±0.05%
D+ -> K- π+ π+	9.13±0.19%
$D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$	2.62±0.10%

- Selected D mesons (including background) are used as "trigger" particles for building the angular correlation distribution. "Associated" particles are selected via kinematic (*p*_T > 0.3 GeV/*c*, lηl < 0.8) and track-quality cuts.
- To remove the contribution from background Dmeson candidates, sideband region correlations are normalized to the background contribution under the signal and then subtracted from signal region correlations

• Event Mixing correction

- The correlation distributions are corrected for the limited detector acceptance and detector spatial inhomogeneities using the event-mixing technique.
- Mixed events are obtained by taking the D-meson candidate from the event N and the associated tracks from other preceding selected events.

$$\frac{d^2 N^{corr} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta} = \frac{\frac{d^2 N^{SE} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta}}{\frac{d^2 N^{ME} \left(\Delta \varphi \Delta \eta \right)}{d \Delta \varphi d \Delta \eta}} \frac{d^2 N^{ME} \left(0, 0 \right)}{d \Delta \varphi d \Delta \eta}$$

Efficiency correction

- Each (D, hadron) pair is weighted by the inverse of the D-meson reconstruction efficiency and of the associated track reconstruction efficiency.
- D-meson p_{T} and event multiplicity dependencies considered for D-meson efficiency; track p_{T} , η and z position of primary vertex dependencies considered for track efficiency

Correction for b->D topological bias

This correction is implemented by using Monte-Carlo closure test.

- Removal of contamination of secondary track
- There are tracks from strange-hadron decays or produced in interactions of particles with the detector material.
- The contribution of secondary track particles, evaluated via Monte Carlo studies, is removed by a fit of the ratio $\Delta \varphi$ (primary)/ $\Delta \varphi$ (all) with a 9th order polynomial.
- Feed-down D-meson subtraction
- A template of angular correlation distribution of D mesons from beauty-hadrons decays (from PYTHIA) is subtracted from the data distributions

Ref: M. Cacciari, M. Greco, P. Nason, The p_T spectrum in heavy flavor hadroproduction. JHEP 05, 007 (1998).

$$C_{\text{prompt D}}\left(\Delta\phi\right) = \frac{1}{f_{\text{prompt}}} \left(C_{\text{inclusive}}\left(\Delta\phi\right) - \left(1 - f_{\text{prompt}}\right)C_{\text{feed-down}}^{\text{MC templ}}\left(\Delta\phi\right)\right)$$

• Weighted average of D-meson species

Samrangy Sadhu

$$\langle \frac{1}{N_{\rm D}} \frac{dN_{assoc}}{dp_{\rm T}} \rangle_{\rm Dmesons} = \frac{\sum_{i=meson} w_i \frac{1}{N_{\rm D}} \frac{dN_{assoc}}{d\varphi}}{\sum_{i=meson} w_i}; w_i = \frac{1}{\sigma_{i,stat}^2 + \sigma_{i,uncorr.syst.}^2}$$

11

• Fit of Averaged correlations

Fit function:

$$f(\Delta \varphi) = c + \frac{Y_{NS}}{\sqrt{2\pi}\sigma_{NS}} e^{\frac{(\Delta \varphi - \mu_{NS})^2}{2\sigma_{NS}^2}} + \frac{Y_{AS}}{\sqrt{2\pi}\sigma_{AS}} e^{\frac{(\Delta \varphi - \mu_{AS})^2}{2\sigma_{AS}^2}}$$

 Physical observables: Baseline height (c), near side and away side peak associated yield (Y_{NS}, Y_{AS}) and width (σ_{NS}, σ_{AS}).

• Estimation of systematic uncertainties

- Repeat fit shifting the points upward/downward in the $\Delta \varphi$ -uncorrelated syst. uncert. range.
- Maximum variation of the parameters taken as systematic uncertainty, adding in quadrature the $\Delta \varphi$ -correlated systematics.

Results : D-hadron correlations

- Average of the results from three D-mesons species (D⁰ and D^{*+} only for pp Vs = 13 TeV), weighted with statistical and uncorrelated systematic uncertainties.
- The comparison of the results is performed after subtraction of the baseline.
- Compatibility within uncertainty is found for all the kinematic ranges.

Results : Near-side physical observables

- Near-side yields and widths are extracted from the fit to the average correlation distributions.
- Compatible values and p_T evolution of the near-side peak yield and width are found within uncertainties for all the kinematic ranges.

Results : D-hadron correlations (comparison with Monte-Carlo)

Eur. Phys. J. C 77 (2017) 245

ALI-PUB-106084

pp, √*s* = 7 TeV

- The comparison is performed after baseline subtraction.
- The shape of the correlation distributions and the evolution of correlation peaks with Dmeson and associated chargedparticle p_T are reproduced within uncertainties by the generators in the near side.
- In the away side POWHEG+PYTHIA6 and PYTHIA8 are closer to the data.

Hot Quarks, 2018

Samrangy Sadhu

Results : Near-side physical observables (comparison with Monte-Carlo)

pp, √*s* = 7 TeV

pp, √*s* = 13 TeV

- Overall compatibility of near-side yields with MC predictions.
- Good description of near-side width within the uncertainties.

Samrangy Sadhu

Azimuthal correlation between heavy-flavour decay electrons and charged particles

Data Sample Pb-Pb 5.02 TeV (2015 data), 24.6M Minimum-bias events p-Pb 5.02 TeV (2016 data), 257M Minimum-bias events

Analysis Strategy

- Electron identification
- Semi-leptonic decays of heavy-favour hadrons:

b,c→e[±]*X*(*BR*≈10%)

• Electron identification (TPC,TOF, ITS, EMCal):

d*E*/dx and *E*/p

- Non heavy-flavour electron identification and efficiency calculation
- Sources: Conversion $(\gamma \rightarrow e^+e^-)$

Dalitz decay $(\pi/\eta \rightarrow \gamma e^+e^-)$

Invariant mass method is used to identify non HF electrons combining e⁻ candidates with all other e⁺ candidates with a constraint opening angle.

```
N_{\text{NonHFE}} = N_{\text{ULS}} - N_{\text{LS}}
```


- Obtain ($\Delta \varphi$, $\Delta \eta$) distribution between inclusive electrons and charged particles.
- Detector effects corrected using mixed event technique and project onto $\Delta \varphi$.
- Efficiency corrected non-HF decay electrons obtained using invariant mass calculation.

 $\Delta \varphi_{\text{NonHFE}} = (1/\epsilon_{\text{NHFE}}) \Delta \varphi_{\text{reco-NonHFE}}$

Correlations between HFE and charged particles obtained as:

 $\Delta \varphi_{\mathsf{HFE}} = \Delta \varphi_{\mathsf{IncE}} - \Delta \varphi_{\mathsf{NonHFE}}$

• Apply charged-particle tracking efficiency and normalize with number of trigger HF-decay electrons.

1/($N_{\text{TrigE}}^*\epsilon_{\text{Had}}$) [$\Delta \varphi_{\text{IncE}}$ - 1/ $\epsilon_{\text{NHFE}}^*\Delta \varphi$ reconon-HFE]

Results: Correlation between heavy-flavour decay electroncharged particle

- The central flow contribution subtracted Δφ distribution in Pb-Pb collisions is compared to the pedestal subtracted distribution in p-Pb collisions.
- The comparison shows a hint of increase in the near-side yield in Pb-Pb collisions w.r.t p-Pb collisions.

- Near-side yield in Pb–Pb collisions is consistent with that in p–Pb collisions at high associated p_T within uncertainties
- Hint of near-side yield enhancement in the 20% most central Pb–Pb collisions w. r. t. p–Pb collisions at low associated p_T – more precise measurement is expected in the next Pb–Pb run (end of 2018)

Summary:

D-hadron correlations:

- compatible near-side yields and widths in pp at $\sqrt{s} = 7$, 13 TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV.
- Good agreement of near-side observables with MC predictions.

HFe-h correlations:

• Hint of near-side yield enhancement in central Pb-Pb collisions.

Suppression of the away-side correlation peak gives a hint to in-medium energy loss. Outlook:

- More precise and differential measurements expected with pp data of 2017 and 2018 and 2018 Pb-Pb run.
- Looking forward to theoretical predictions for these observables !

