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Physics motivation : Why do we study heavy flavour?

• Heavy quarks with their heavy masses: charm, mc  
~ 1.3 GeV/c2  and bottom, mb ~ 4.2 GeV/c2 .

• Predominantly produced by parton-parton hard 
scattering in the early stages of the collision -> 
Experience the complete evolution of QGP 
medium: Production time: tQ = 1/2mQ ≤ 0.1 fm/c.

• Produced due to hard scattering -> perturbative 
QCD can be applied.

• QCD energy loss is expected to occur via both 
• Inelastic (radiative energy loss via medium-

induced gluon  radiation)  and
• Elastic (collisional  energy  loss)  processes.   

Therefore, heavy quarks act as important tools for characterizing the medium 
formed in heavy-ion collisions.
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Physics motivation : Open heavy flavour in Pb-Pb collisions

• Contribute to the collective motion inside the system -> provide information on 
medium transport properties.

• In charm sector, ALICE has observed:
     -> A significant suppression (factor 4-5) of D-meson production for pT > 5 GeV/c 
in central Pb-Pb collisions with respect to pp and p-Pb collisions, indicating charm 
quark energy loss due to interactions with the medium constituents.
     -> Positive elliptic flow (v2) for D mesons in semi-central collisions (30-50%), for 
2 < pT < 6 GeV/c, suggesting that charm quarks participate to the collective motion of 
the medium.  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Physics motivation : Open heavy flavour in small systems

p-Pb collisions:
Heavy-flavour production and kinematic properties can be modified by:  

• Cold nuclear matter effects, like shadowing, gluon saturation/color glass condensate, 
Cronin effect, possible energy loss mechanisms.  

• “Collective-like" effects (e.g. elliptic flow), which resembles the observations from heavy-ion 
collisions. 

  
pp collisions:

Eur. Phys. J. C77 (2017) 550

• Test and set constraints on production mechanisms  
-> Production cross section can be treated 
perturbatively due to the large Q2 involved  
-> pQCD-based calculations describe reasonably 
well open charm and beauty production at the LHC  

• Probe parton distribution function (especially for 
gluons) at low values of Bjorken x  

• Reference for studies in p-Pb and Pb-Pb collisions  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Physics motivation: Heavy-flavour correlations

In Pb-Pb collisions: 

• Energy loss of heavy-flavour partons. 

• Possible modification of jet fragmentation in QCD medium.  

Azimuthal correlations of heavy-flavour particles or heavy-flavour decay electrons with 
charged hadrons are important to study :

In p-Pb collisions: 

• Investigate possible modifications of angular correlation pattern due to cold 
nuclear matter effects. 

• Search for long-range ridge-like structure observed in di-hadron correlations, 
also in the heavy-flavour sector, possibly due to initial (e.g. CGC) or final (e.g. 
hydrodynamics) state effect. 

In pp collisions: 

• Investigate heavy-flavour quark fragmentation properties and characterize 
heavy-flavour jets. 

• Sensitivity in modelling of HQ processes. 

• Reference of p-Pb and Pb-Pb collisions. 
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ALICE apparatus

V0 detector used 
for triggering and 
multiplicity 
determination 

Time Projection Chamber 
(|η|<0.9) used for tracking 
and PID 

Inner Tracking 
System (|η|<0.9) 
used for vertexing 
and tracking 

Time of Flight 
used for PID 

ElectroMagnetic 
Calorimeter used 

for high pT 
trigger, PID
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Azimuthal correlation of D mesons and charged particles

Data sample: 
pp,	√s	=	13	TeV	(2016	data),	437M	minimum-bias	events	
pp,	√s	=	7	TeV	(2010	data),	314M	minimum-bias	events	
p-Pb,	√sNN	=	5.02	TeV	(2016	data),	602M	minimum-bias	events

Talk by Marianna Mazzilli : Multiplicity and centrality dependent  azimuthal correlation studies on 12.09.2018
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Analysis Strategy

• Reconstruction of D mesons
Reconstruction is based on the secondary vertex which is displaced from the primary vertex of the 
collision

Decay Channel Branching 
Ratio

D0 —> K- π+ 3.88±0.05%

D+ —> K- π+ π+ 9.13±0.19%

D*+—> D0  π+—>K- π+ π+ 2.62±0.10%

• Selected D mesons (including background) 
are used as “trigger” particles for building the 
angular correlation distribution. “Associated” 
particles are selected via kinematic (pT > 0.3 
GeV/c, |η| < 0.8) and track-quality cuts.  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JHEP 01 (2012) 128

• To remove the contribution from background D-
meson candidates, sideband region correlations are 
normalized to the background contribution under the 
signal and then subtracted from signal region 
correlations  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• Event Mixing correction

Event 1 Event 2 Nth

Event
Fake Correlations

• The correlation distributions are corrected for the limited detector acceptance and 
detector spatial inhomogeneities using the event-mixing technique. 

• Mixed events are obtained by taking the D-meson candidate from the event N and the 
associated tracks from other preceding selected events. 
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• Efficiency correction
• Each (D, hadron) pair is weighted by the inverse of the D-meson reconstruction efficiency and 

of the associated track reconstruction efficiency .

• D-meson pT and event multiplicity dependencies considered for D-meson efficiency; track pT, 
η and z position of primary vertex dependencies considered for track efficiency 
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• Correction for b->D topological bias
This correction is implemented by using Monte-Carlo closure test.

Samrangy Sadhu                                                                                                          Hot Quarks, 2018�10



• Removal of contamination of secondary track

• There are tracks from strange-hadron decays or produced in interactions of particles  
with the detector material. 

• The contribution of secondary track particles, evaluated via Monte Carlo studies, is removed 
by a fit of the ratio ∆𝜑(primary)/∆𝜑(all) with a 9th order polynomial.

• Feed-down D-meson subtraction

• A template of angular correlation distribution of D mesons from beauty-hadrons decays (from 
PYTHIA) is subtracted from the data distributions  

Ref: M. Cacciari, M. Greco, P. Nason, The pT 
spectrum in heavy flavor hadroproduction. 
JHEP 05, 007 (1998). 
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• Weighted average of D-meson species
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• Fit of Averaged correlations
Fit function:
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• Physical observables: Baseline height (c), 
near side and away side peak associated 
yield (YNS, YAS) and width (σNS,σAS) . 

• Estimation of systematic uncertainties

• Repeat fit shifting the points upward/downward in the Δ𝜑-uncorrelated syst. uncert. range.

• Maximum variation of the parameters taken as systematic uncertainty, adding in 
quadrature the Δ𝜑-correlated systematics.  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Results : D-hadron correlations
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• Average	of	the	results	from	three	D-mesons	species	(D0	and	D*+	only	for	pp	√s		=	13	TeV),	
weighted	with	statistical	and	uncorrelated	systematic	uncertainties.	

• The	comparison	of	the	results	is	performed	after	subtraction	of	the	baseline.	
• Compatibility	within	uncertainty	is	found	for	all	the	kinematic	ranges.

pp,	√s	=	13	TeV	
pp,	√s	=	7	TeV	
p-Pb,	√sNN	=	5.02	TeV

3<pT(D)<5 GeV/c 5<pT(D)<8 GeV/c 8<pT(D)<16 GeV/c

pT(assoc)>0.3 GeV/c

pT(assoc)>1 GeV/c

0.3<pT(assoc)<1 GeV/c
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Results : Near-side physical observables

• Near-side yields and widths are extracted from the fit to the average correlation 
distributions. 

• Compatible values and pT evolution of the near-side peak yield and width are found 
within uncertainties for all the kinematic ranges.
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Results : D-hadron correlations (comparison with Monte-Carlo)
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• The	comparison	is	performed	
after	baseline	subtraction.	

• The	shape	of	the	correlation	
distributions	and	the	evolution	
of	correlation	peaks	with	D-
meson	and	associated	charged-
particle	pT	are	reproduced	
within	uncertainties	by	the	
generators	in	the	near	side.	

• In	the	away	side	
POWHEG+PYTHIA6	and	PYTHIA8	
are	closer	to	the	data.

Eur. Phys. J. C 77 (2017) 245
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Results : Near-side physical observables (comparison with Monte-
Carlo)
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• Overall	compatibility	of	near-side	yields	with	MC	predictions.		
• Good	description	of	near-side	width	within	the	uncertainties.

Eur. Phys. J. C 77 (2017) 245
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Azimuthal correlation between heavy-flavour decay electrons 
and charged particles

Data Sample 
Pb-Pb 5.02 TeV (2015 data), 24.6M Minimum-bias events 
p-Pb 5.02 TeV (2016 data), 257M Minimum-bias events
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Analysis Strategy

• Electron identification
• Semi-leptonic decays of heavy-favour hadrons:

b,c→e±X (BR≈10%) 

• Electron identification (TPC,TOF, ITS, EMCal): 
dE/dx  and E/p 
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• Non heavy-flavour electron identification and 
efficiency calculation

• Sources: (γ→e+e– )

(π/η→γe+e– )
Conversion

Dalitz decay

Invariant mass method is 
used to identify non HF 
electrons combining e- 
candidates with all other e+ 
candidates with a constraint 
opening angle.

NNonHFE = NULS – NLS  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• Obtain (Δ𝜑, Δη) distribution between inclusive electrons and charged particles.

• Detector effects corrected using mixed event technique and project onto Δ𝜑.

• Efficiency corrected non-HF decay electrons obtained using invariant mass calculation. 

  Δ𝜑NonHFE = (1/εNHFE) Δ𝜑reco-NonHFE
 
Correlations between HFE and charged particles 
obtained as: 

  Δ𝜑HFE = Δ𝜑IncE – Δ𝜑NonHFE

• Apply charged-particle tracking efficiency and normalize with number of trigger HF-decay 

electrons.

                                  1/(NTrigE*εHad) [Δ𝜑IncE- 1/εNHFE * Δ𝜑 reco non-HFE] 
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Results: Correlation between heavy-flavour decay electron-
charged particle
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ALI−PREL−134633

• The central flow contribution subtracted Δ𝜑 distribution in Pb-Pb collisions is compared to the 
pedestal subtracted distribution in p-Pb collisions.

• The comparison shows a hint of increase in the near-side yield in Pb-Pb collisions w.r.t p-Pb 
collisions.  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Results: Near-side yield  extraction from Heavy-flavour decay 
electron-charged particle correlation

• Near-side yield in Pb–Pb collisions is consistent with that in p–Pb collisions at high 
associated pT within uncertainties 

• Hint of near-side yield enhancement in the 20% most central Pb–Pb collisions w. r. t. 
p–Pb collisions at low associated pT — more precise measurement is expected in the 
next Pb–Pb run (end of 2018) 
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Summary:
D-hadron correlations: 

• compatible near-side yields and widths in pp at √s = 7, 13 TeV and p-Pb at √sNN = 5.02 

TeV.

• Good agreement of near-side observables with MC predictions. 

HFe-h correlations: 

• Hint of near-side yield enhancement in central Pb-Pb collisions. 

• More precise and differential measurements expected with pp data of 2017 and 2018 
and 2018 Pb-Pb run.

• Looking forward to theoretical predictions for these observables !  

Outlook:

Thank you

Suppression of the away-side correlation peak gives a hint to in-medium energy loss.
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