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Hey Nina,
why should | listen?

Would even one collision in average per particle lead to
S|zeable anlsotroplc row coeff|0|ents v, ?

Few-hlt-dynamlcs
Kinetic theory Kn>>1
Instead of hydrodynamics kn<<1

Old stuff with
new Iinterest

these observables are
the harmonlc row coeff|C|ents

Introduce theoretlcal observables
WhICh are measurable

Comparlson of experlmental data and theoretlcal descrlptlons

Understandlng of the HIC and A+p- and p+p- coII|S|ons
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OB Few collisions in HICs? -
N Is that realised in nature? question.
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Like p+p, p+Pb and peripheral HIC |
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Yang-Mills
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Early stage of all HIC’s
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hydrodynamics
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Late stage of all HIC’s — -
(around kinetic freeze-out) T (fm) = | | |
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Link between eccentricities ¢, and
anisotropic flow coefficients v, (p;)

Collective-behaviour{Hydrodynamics)
Position space Momentum space
e Initial t = 0 Few-hit-dynamics (kinetic theory) v e Finalf — o

e Eccentricities

=0 == 0) g « Anisotropic flow




Spatial asymmetry S et — u p Anisotropic flow
y‘l_

Nz
20N

initial A I T T B B A P PP RIS PP S TN later times
| Evolving system far from equilibrium '

, Kinetic theory .
i Very few rescatterings in average per particle }
‘ (No continuous medium)

Expanding mixture of '
G several species of ,
i relativistic (massive) particles ;

. Restriction to the |
| transverse plane |
. (two-dimensional)

| Start our description |
| already with different
| particle-types i k |




Anisotropic flow for particles of
type i

¢ Measurements at r = oo of flow harmonics:

Vni\Pi) = = &N
Iy db

e With the transverse momentum distribution of particles:




Time rate of chance of
anisotropic flow coefficients

 Time rate of change

4o W) (n(- ) i
dt i\ 27 d°N;
IO d2p, d¢l

 Measured (f = ©) anisotropic flow
o % Iozﬂ ffooo %ﬁ- (7, x,p;) cos (n (¢, — ‘Pn)> d*x de,
n,i (pz) = [ Evn,i (t’pi) dt = J

.
271' dzNi
0 0 Io 7 dg;

dt

e with
We need an on-shell

_ single particle phase space distribution
Vi <O,Pi) =0 . .
for particles of type:
9




What do we know about f, (t, X, pi) ?

 Equation of motion is the classical relativistic Boltzmann equation (without external force):
p,ua'uf;'(t’ X, pl) — Ccollision [f;'(t’ X, pl)]

» Distribution function f;(z,x,p;,) obeys this equation

10



What do we know about J; (t, X, pl-) ?

e Without collisions

pﬂaﬂf;-(O)(ta X, pz) — O
« we find the free-streaming solution f”(z,x,p,)

* The free-streaming distribution function depends on time in following way

f;(O)(t’ X, pl) — f‘l(())(oax — 1 Vi’ pl)

e with the velocity v;

d
Vn,i (t’pi) =0= Vn = vn(t) = vn(tO = 0)

E n,i
’ We have to include collisions.
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What do we know about f; (z,x,p;)?

We want to include few collisions, such that / (t, X, p,-) may develop anisotropies in
momentum space.
EXxpansion:

same initial ,
t distribution function |
fat 1=0

fit.x,p) =0, x,p) + £, %, p) + OQ2)

including higher

orders is possible

Collisions are due to /"X, p))

With _fl(())(ta X, pl) > > ‘fl(l)(ta X, pl)

and p,0f"t,x,p) =0

’ We have to choose a collision term
12



Choose a collision term C..,;;.i,, |12, X, p))

e Elastic 2-to-2-collisions

e Particles of species i collide with particles of species k

1 3 y .
Ccollision [fi(())(t’ X, pl)] — <1 _ 561'/6) [f;(O)(t’ X, pl) fIEO)(t’ X, pk) W pi’ pk — pi" pk,

—fOx, p) £, X, ) w P, Py = Pis P

circumvent double counting

i i .. transition rate
(if particle of type i is equal to k)

Other
e Collision term is linear in transition rate collision

e Collision term is quadratic in distribution function terms are
possible

73
N\

/=
AN

Gain term Pk Loss term



Back to anisotropic flow
coefficients

e Remember:

d ( ) fznf . dt (t X, pl) cos( (gbi — ‘Pn)> d*x do;
I’ll t pl
dt Jozﬂ Zzi\:l d¢l

* free-streaming and correction
due to collisions
 Consider the nominator. * 2-to-2 collision-term

e Our previous assumptions guide us to:

27 00 27 00
d
[ [ Ef (t X, pl) COS < (qbl- — ‘I’n)> d*x dp, = J J C...ilision [f(O)(t X, P; ] COS < (ql) b 4 )) d*x do,
0 0 -0
1 3 3 -
= (1 — 5%) [f,-“’)(t, X, ) [0, %, B) w (D Py = Pir Py) €OS (n (¢ = ‘Pn))
—f0 %, p) £ %, p) W (P Pr = B> P) €05 (” (¢ = lPn)> d’py d°py d°p; d°x d,

e Anisotropic flow coefﬂments are determined by the free-streaming solution.
e Transition rate ~--3 cross section

’ We still need f;” (0.x, p;)



Our free-streaming distribution function in
polar coordinates (r, ©)

r\° r? r\’ r?
fO0x,p;) < F;(p;) |1+6 (E) exp | —5o7 | cos (20) + ¢, <E> exp | —5o7 | cos (3 (© - ‘1’3)) +...

f isotropic momentum ;"
 distribution function

! contains only linear |
. terms in eccentricities

{ factorised in position- §
'and momentum space ¢

e We assume nearly the same distribution function for particles of type &
« We only exchanged i —» k (F;(p;) - F,(p,)and N; = N;)

It could also be interesting to assume different R
for different species due to production processes

’ All we need to calculate our flow harmonics
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Results - Scaling behaviour

V20<6d€2

V3O<0d€3
2

v4o<0d€2+ad€4

V50C0d62€3+0-d€5

Vg X 04 € €4+6d€32+0'd €6+6§ 623
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Interesting: Our ’‘forecast”-
hexagonal flow scales with different
powers in o,

* Mean number of collision N, o, x Kn™!




Results - Scaling behaviour and
comparison to hydrodynamics

Interesting: Our ’‘forecast”-
hexagonal flow scales with different
powers in o,

| i t Hydrodynamics:
| V) XKy, €6

V2 X Gd €2

V3 X Gd €3 V3 X K3,3 €3

Thanks to
Jasper’s talk
yesterday

2 2
V4 X Gd €2 + Gd €4 V4 X K4,22 €2 + K4,4 €4

VS X Ud 62 63 + O'd €5 VS X K5’23 €2 63 + K5,5 65

Vg X 04 € €4+0d€32+0'd €6+0§ 623

) 2
Vo X Kg o4 €3 €4+ Kg33 €35 T Kgg €6+ Kg 200 €5

{ When we consider e.g.
' e 3-t0-3 collisions
e additional terms in f;

* Mean number of collision N, « o, x Kn™!
* Linear response coefficientsx, ,
* Nonlinear response coefficientsk, ;,, .
* They depend on transport properties like
17 shear viscosity

l, X, pl)

4_




? Bottomonia (;)

and massless medium particles (k)



Collision term C,, i, |/1(2,x,p;)| for Bottomonia

e Bottomonia (i) collide with massless medium particles (k)

* Inelastic collisions mw=—~--3s restriction to loss term

N _fi(o)(l‘, X, Py J, ;EO)(Z‘, X, P0) W (P Py = B Bi) d°Py d°Py d°B;

* Transition rate ~~—3 cross section

=—2roy J fl.(o)(t, X,p) f ,EO)(L X, P) Vie APy

L

1
Comment: Bottomonia are destroyed after a collision and cannot be created.
19




Doubtful: We assume the

R eS u ItS - maximal value of collisions (one N S

collision per Bottomonia). That means that 9
there is no Bottomonia left and no

Bottomonia flow e

Vni Vo

014 B 025 L
0.12 1

0.20 +
0.10 1 - %
0.08! — v2i(pi) 0.15} o
0.06 | — vai(pi) !

0.10 + 62=1
0.04 + —

0.05¢
0.02 r

Pj ; 5 ; ; pi

: GeV 1 : Ge
v2i (p;) and vy, (p;) are shown for 0.01 <p; <47 i [ vy (p;) is shown for 0.01 <p, <47
j; C C . ,’;

1

i We choose ¢, = 5 { | We choose

Comment: Bottomonia are destroyed after a collision. That means that we have to assume that Bottomonia
can collide at most once.

20




N

Yang-Mills Relativistic
IP-Glasma hydrodynamics

Kinetic theory Kinetic theory




What happens
next?

e Different approach

(e g. equilibrated gas) to describe
massless particles instead of the free- |
streaming ansatz.

L ’ e Comparison with numerical studies/ help to
calibrate few collision regime e—
e Extension to 3-dimensional

—

T (fm) = T T T

Thanks for your attention |
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Knudsen number Kn

[

Definition of dimensionless Knudsen number Kn = mTfp

with L typical length scale over which macroscopic system
properties vary

Small Kn < dense system/collisions occur relatively often
Large Kn < free streaming limit
Inverse Knudsen number Kn™'«N_ .

o, N
Is proportional to the number of rescatterings per particle N, ~ C; L <

24



Anisotropic flow coefficients

2 d*N,
Measurement at 7 = - Jo <, cO8 (” (¢ - an)> dg,
Vi (Pi) — jzn 2N i
Vi (Pi) = Vi (f = °°,Pi) o an |
2r d*N,
( ) J() d2p. (t’ pl) COS <I’l (¢l o Tn)) d¢l
Vui\l,Pi) = l _ &°N, S
Iy 22]1:’ (t.:) dgp g, " :J_mfi“”"pf) “
f02ﬂ J:Ojj (t, X, pl-) COS (n (gbl- — ‘Pn)> d*x de;
Vi (1) = 2N,
Jo" St dy d
dt
2 o0 d 3 7
iv / (f p-) = JO I_OOE i (t, i pi) = <n (¢l B ‘Pn) X d¢i Vi (P1) = v (1 = 00, )
dr I I()Zyz ZZ\)C do )vn,l (0.p,) =0
© - IOZ” fjooo% l- (t, X, pi) coS (n(qbi — ‘Pn)) d*x de,
i () = | S (em) e = | i
’ dr 2r d*N;
0 0 Jo ye do,



Left side of Boltzmann equation
p,ua'ufi(t’ X, pl) — Ccollision

0 dx dp ] f(l‘, X, p) no external force | O

—+V-Vx]f(t,x,p)

ot

for f(t, X,p) = fO (t, X,p) + (t, X,p) follows

foofoan:

vanishes,
when integrating
free streaming over space for
our choice of the
distribution function

20

Sve V[ (exp)



Detailed evaluation for nominator
of V.. (t,Pi) for Bottomonia

/ ” / O Fi (D) cos (0 (6, — W) dx do,

27T 00
/ / if,(l) t,x,pi)cos (n(¢; —¥,)) d*x do;

£ 11 (t,%,ps)=0

2m
Boltzmann equation
e [ Cotvon (100,00 cos (61 = ) x s
on OSS term d
ly loss ¢ _/f.(o)txp- txp)cos(n(gbi—\lf))vk%d@dgbkpkdpkdxdqbi
sssss section —27rad/f( ) (t,x,pi) fr (0 )(t X, Px) cos (n (¢; — Vy,)) vik doy d*x do; pr. dpy,
differential cross section relative velocity
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How to compute the initial
eccentricities ¢, ?

Iy J37 G, @) cos (n (0 = ,) ) dOdr

I 17 Gr, ©)rm+1d@dr

e with G(r) = G(r,0)

e the position dependent part of initial distribution function

fi(()) (t = O,I', pz) — G(I‘)F (pz>

‘ 1
11

Comment: Actually one has to average over the entropy density to determine the eccentricities. But computing
LI the eccentricities with the distribution function will not lead to a difference. It is only a matter of convention.

28



How to calculate the number of collisions?
How to insure few collisions?
Part |

e Scattering rate at time«

I'(t) = [ fi(6x,p;) fi (X)) 6,(Q) vy dQ dx dp; dp,

e With assumptions as before

Nyear. = JF(t)dt =2 Gdjﬁ(o) (t, X, Pi) f,ﬁo) (f, X, Pk) Vi dX dt dep; depy, p; dp; py dp;

calculated

5
Nl- Nk T2 O-d 3 1 1
Nyeur. = J [4 + —62] Fi(p,) Fi(p) FY <5, — I,E,I,xm xb> Pr dpy p; dp;

R \/52

With JFk (P) Pidpe=1

scat. —

follows further N; N 770 3 1 1
J kR . [4 + —622] F;(p) Fl()z) <—, - 1,E,xa, xb) p; dp,

\/5 2

2 1 1 .
We know = < Fl<)2> <5, — 1,5,xa, xb) <1 (in dependence of x, xp; and x, < p; )
JT

and therefore

3
N:. N, 2 o 3
i “'k d[ + 622

NG

scat. —

2 R

5
N. N, 27 o 3
<N, _ <— kR d[4+—€22]

elastic coll.
N(® =N,




How to calculate the number of collisions?
How to insure few collisions?
Part Il

e Again

3 3
A e e

R \/5 scat. = \/5 2

e At most one collisions per Bottomonia

=

3
2Nk T2 o [4+i€22] <1
V2

N 1
N k0d<

 Maximal value fore, =0

N, 1
e Therefore = —*%¢ < 3
R 872

e Insert this value in the calculations of anisotropic flow coefficients to ensure at most 1 collision per
Bottomonia

30



Our free-streaming distribution function in
polar coordinates (r, ©)

© 0, %.p1) =~ Flpyexp ——— ) [1- SNy
fi (O,X,pz)—2ﬂR2F(pz)exp( 2R2) [1 4 e exp( 2R2> (R) cos(2@)]

particle number isotropic momentum
for particles  space distribution typical system size spacial eccentricity  cut-off

of species i function

{ isotropic momentum §

§ { contains only linear
. distribution function ¢

. terms in eccentricities {

{ factorised in position- §
and momentum space §
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Further motivation

{ Increase the numbers of collisions to be more realistic (except Bottmonia) §
| and to compare results to different theoretical approaches |

viscous
hydrodynamics

DNMR
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