



# Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

Presented by Jan Fotakis

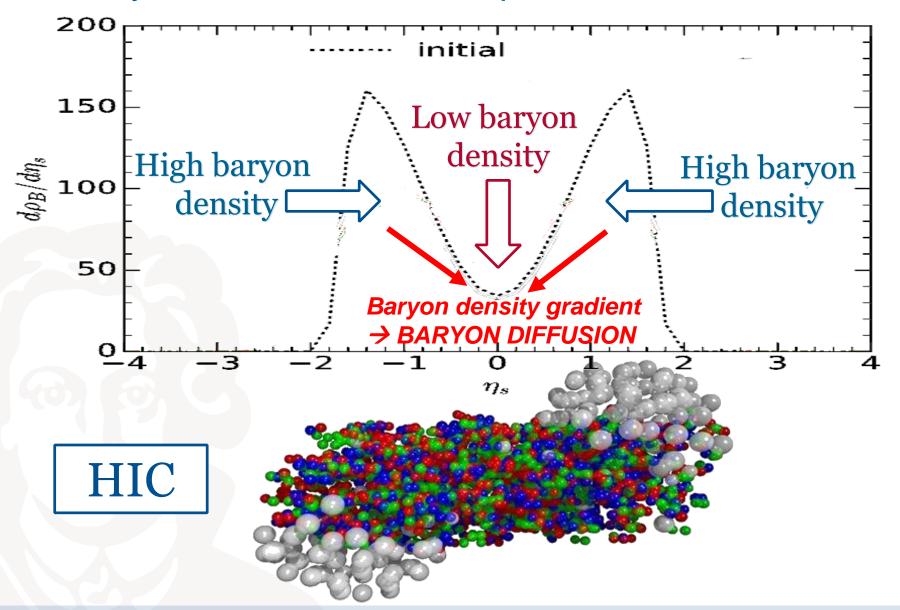
Collaborators

Moritz Greif, Gabriel Denicol and Carsten Greiner

Greif, Fotakis, Denicol, Greiner, Phys. Rev. Lett. 120, 242301 (2018)



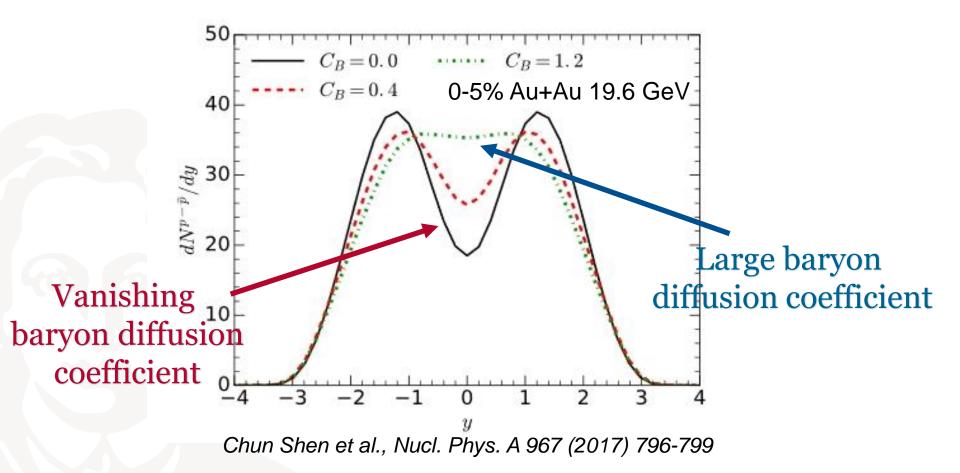
# Why could diffusion be important?



# GOETHE UNIVERSITÄT

# Why could diffusion be important?

 During low-energy HIC (e.g. RHIC BES): diffusion could have great impact on dynamic evolution



Jan Fotakis



# Description of Diffusion

- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory
- One conserved charge (q):



# **Description of Diffusion**

- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory
- One conserved charge (q):

Net charge 4-current:

$$N_q^{\mu} = n_q u^{\mu} + \kappa_q \nabla^{\mu} \left( \mu_q / T \right)$$





- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory
- One conserved charge (q):

Net charge 4-current:

Ideal flow 
$$N_q^{\mu} = n_q u^{\mu} + \kappa_q \nabla^{\mu} \left( \mu_q / T \right)$$

 $u^{\mu}$ : flow velocity

 $n_q$ : net charge density

Jan Fotakis





- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory

One conserved charge (q):

j<sup>μ</sup><sub>q</sub>: Net charge diffusion current

Net charge 4-current:

Ideal flow 
$$N_q^\mu = n_q u^\mu + \kappa_q \nabla^\mu \left(\mu_q/T\right)$$

 $u^{\mu}$ : flow velocity

 $n_q$ : net charge density





- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory

One conserved charge (q):

Net charge 4-current:

Ideal flow  $j_q^\mu$ : Net charge diffusion current  $N_q^\mu = n_q u^\mu + \kappa_q \overline{\nabla}^\mu \left(\mu_q/T\right)$  Gradient in

 $u^{\mu}$ : flow velocity

 $n_q$ : net charge density

thermal potential

~ Gradient in

net charge density





- Early dynamic evolution of HIC modeled in relativistic dissipative fluid dynamics
- Apply Navier-Stokes theory

One conserved charge (q):

 $j_q^{\mu}$ : Net charge diffusion current

Net charge 4-current:

Ideal flow  $N_q^\mu = n_q u^\mu + \kappa_q \nabla^\mu \left(\mu_q/T\right)$ 

Net charge diffusion coefficient

 $u^{\mu}$ : flow velocity

 $n_q$ : net charge density

Gradient in thermal potential ~ Gradient in net charge density

# **Description of Diffusion**



- In multi-component system with multiple conserved charges: particles can have any combination of charges (e.g. proton: electric and baryon charge)
- Net-charge diffusion currents effect each other

$$\begin{pmatrix}
j_B^{\mu} \\
j_Q^{\mu} \\
j_S^{\mu}
\end{pmatrix} = \begin{pmatrix}
\kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\
\kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\
\kappa_{SB} & \kappa_{SQ} & \kappa_{SS}
\end{pmatrix} \cdot \begin{pmatrix}
\nabla^{\mu} \alpha_B \\
\nabla^{\mu} \alpha_Q \\
\nabla^{\mu} \alpha_S
\end{pmatrix}$$

Off-diagonal coefficients: gradients of given charge can effect diffusion currents of other charges

Are the offdiagonal coefficients important?

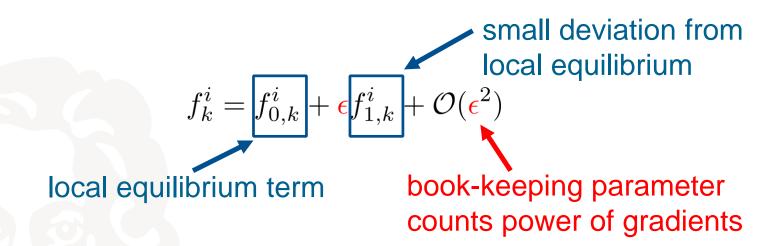


 Assume dilute Boltzmann gas with N<sub>s</sub> particle species and conserved baryon, strangeness, and electric charge close to local equilibrium → describe with kinetic theory

$$f_k^i = f_{0,k}^i + \epsilon f_{1,k}^i + \mathcal{O}(\epsilon^2)$$
 book-keeping parameter counts power of gradients

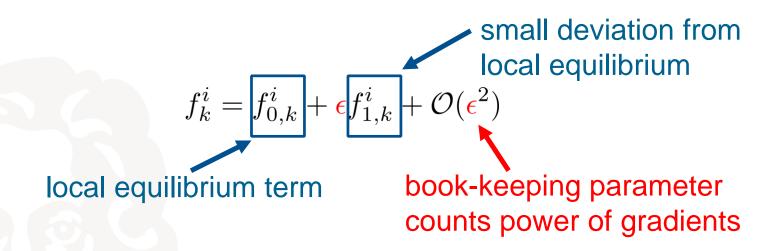


 Assume dilute Boltzmann gas with N<sub>s</sub> particle species and conserved baryon, strangeness, and electric charge close to local equilibrium → describe with kinetic theory





 Assume dilute Boltzmann gas with N<sub>s</sub> particle species and conserved baryon, strangeness, and electric charge close to local equilibrium → describe with kinetic theory



Neglect non-linear contributions → Navier-Stokes limit





 Relativistic Boltzmann equation determines evolution of system

$$k_i^{\mu} \partial_{\mu} f_k^i = -\sum_{j=1}^{N_s} C_{ij} [f_k^i]$$





 Relativistic Boltzmann equation determines evolution of system

$$k_i^\mu \partial_\mu f_k^i = -\sum_{j=1}^{N_s} C_{ij} [f_k^i]$$
 Chapman-Enskog expansion to first order 
$$k_i^\mu \partial_\mu f_{0k}^i = -\sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$$





 Relativistic Boltzmann equation determines evolution of system

$$k_i^\mu \partial_\mu f_k^i = -\sum_{j=1}^{N_s} C_{ij} [f_k^i]$$
 Chapman-Enskog expansion to first order  $k_i^\mu \partial_\mu f_{0k}^i = -\sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$ 

With linearized collision term:

$$\sum_{j=1}^{N_s} C_{ij}[f_{1k}^i] = \sum_{j=1}^{N_s} \gamma_{ij} \int dK_j' dP_i dP_j' W_{kk' \to pp'}^{ij} f_{0k}^i f_{0k'}^j \left( \frac{f_{1k}^i}{f_{0k}^i} + \frac{f_{1k'}^j}{f_{0k'}^j} - \frac{f_{1p}^i}{f_{0p'}^i} - \frac{f_{1p'}^i}{f_{0p'}^i} \right)$$

Transition rate: contains (isotropic) cross sections = information from microscopic interactions





Diffusion currents in kinetic theory:

We want to calculate THIS

$$j_q^{\mu} = \sum_{i=1}^{N_s} q_i \int dK \ k_i^{\langle \mu \rangle} f_{1k}^i \stackrel{!}{=} \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left( \frac{\mu_{q'}}{T} \right)$$

Navier-Stokes limit

In order to do so, we need to solve:

$$k_i^\mu \partial_\mu f_{0k}^i = -\sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$$

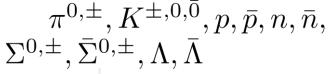
More details in: Greif et al., Phys. Rev. Lett. 120, 242301 (2018)

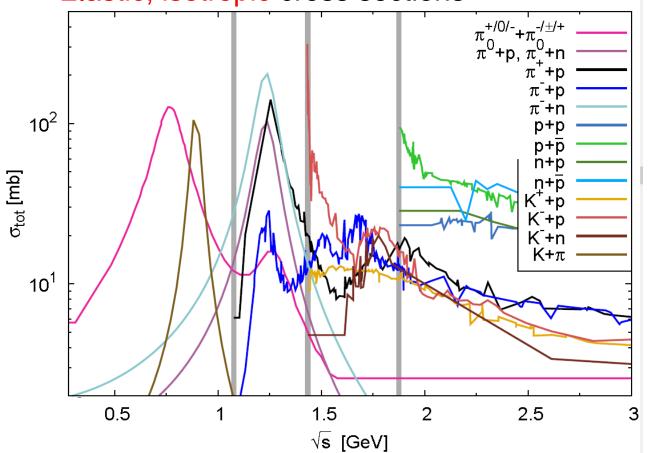
#### Results



# Hadronic resonance gas...

- Use 19 different massive species
- Elastic, isotropic cross sections





- Use PDG data
- Other cross sections: GiBUU, UrQMD or constant

#### Results



# Simplified (conformal) QGP model...

- Use 7 massless species  $u, \bar{u}, d, \bar{d}, s, \bar{s}, g$
- Simplified approach: Fix shear viscosity to express isotropic cross section in terms of temperature

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \Rightarrow \quad \sigma_{tot} \approx \frac{0.716}{T^2}$$

Bouras et al., Phys. Rev. Lett. **103**, 032301 (2009)

#### Results



# Simplified (conformal) QGP model...

- Use 7 massless species  $u, \bar{u}, d, \bar{d}, s, \bar{s}, g$
- Simplified approach: Fix shear viscosity to express isotropic cross section in terms of temperature

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \Rightarrow \quad \sigma_{tot} \approx \frac{0.716}{T^2}$$

Bouras et al., Phys. Rev. Lett. **103**, 032301 (2009)

Two distinct systems:

T < 160 MeV: HRG

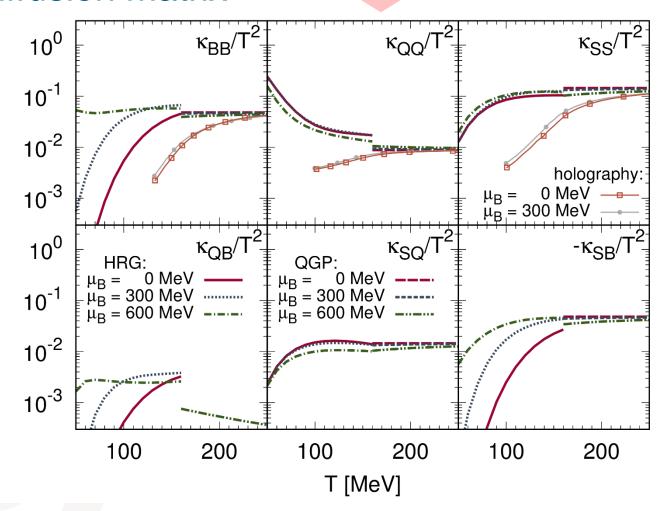
T >= 160 MeV: simple QGP model

→ phase transition area is NOT covered by our calculations

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

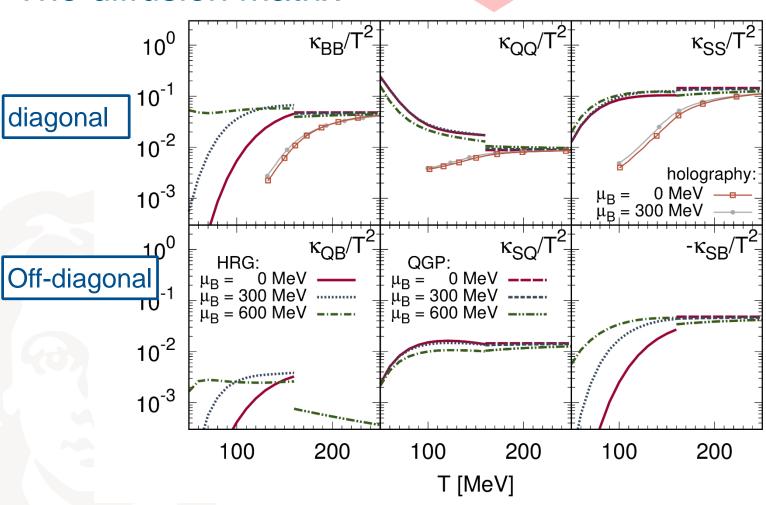




$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

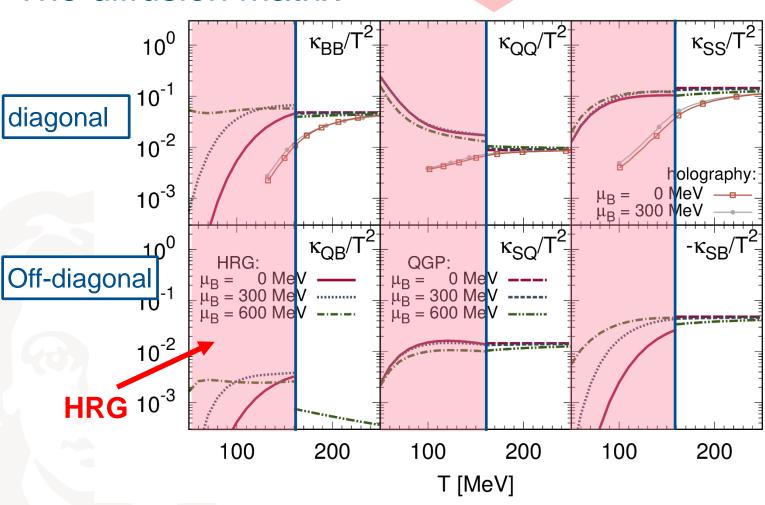




$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

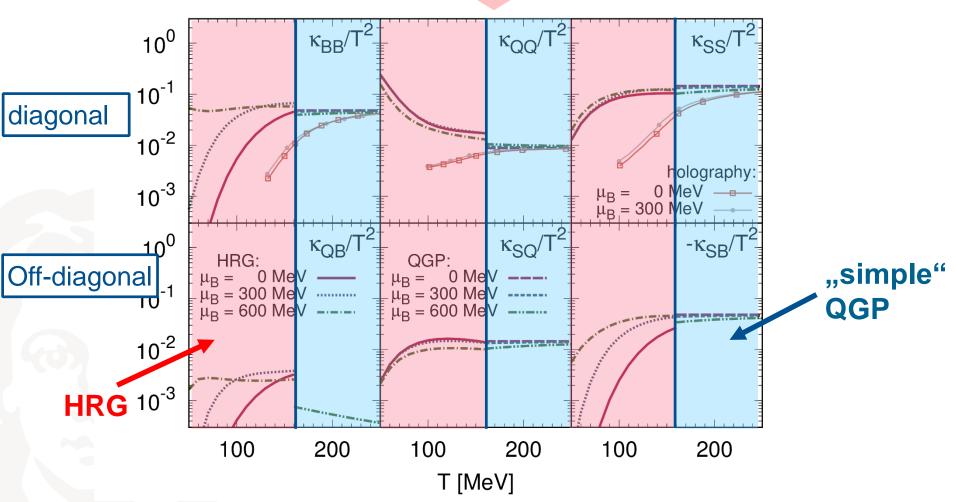




$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

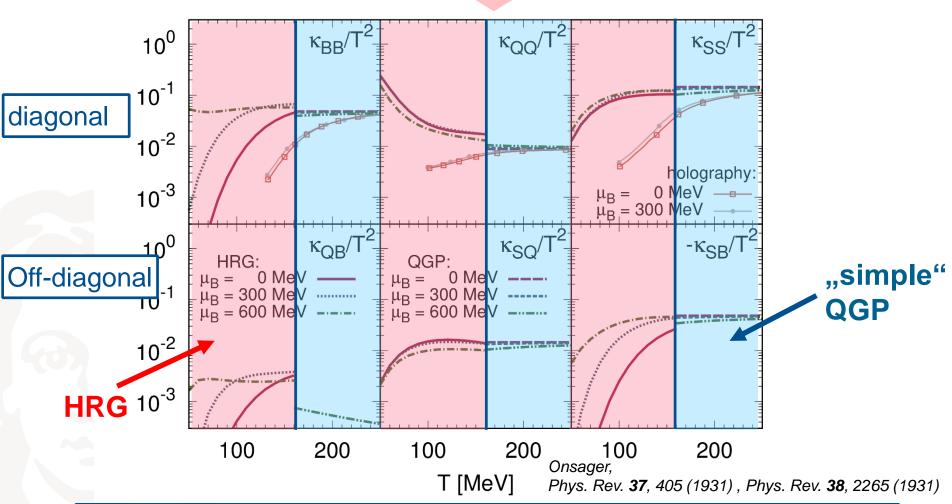




$$n_S = 0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$



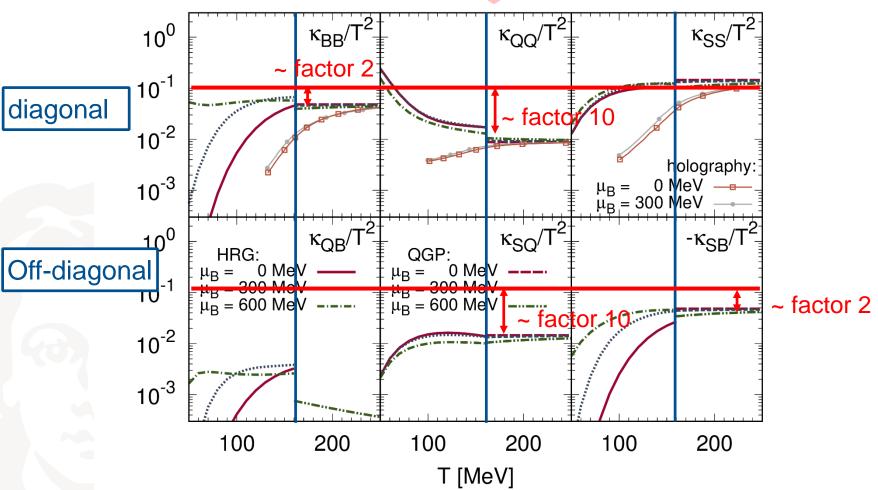


Diffusion matrix is symmetric! → Onsager Theorem holds

$$n_S = 0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$





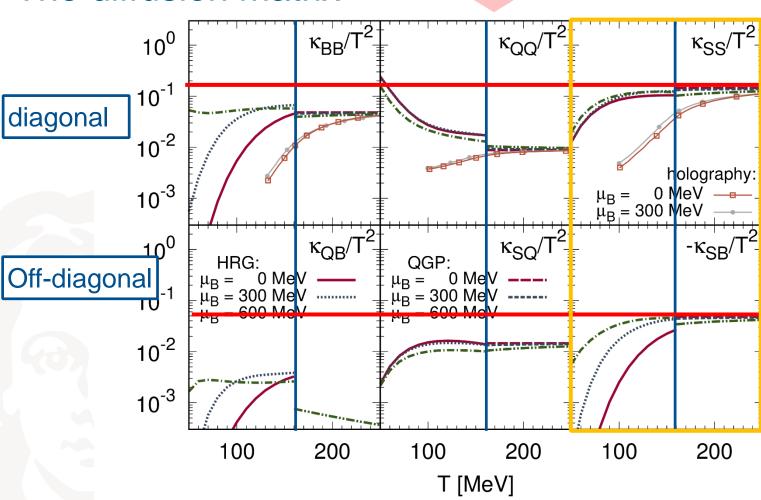
Off-diagonal contributions have similar magnitude as diagonal ones 

effects of multi-carrying charges should not be neglected

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$



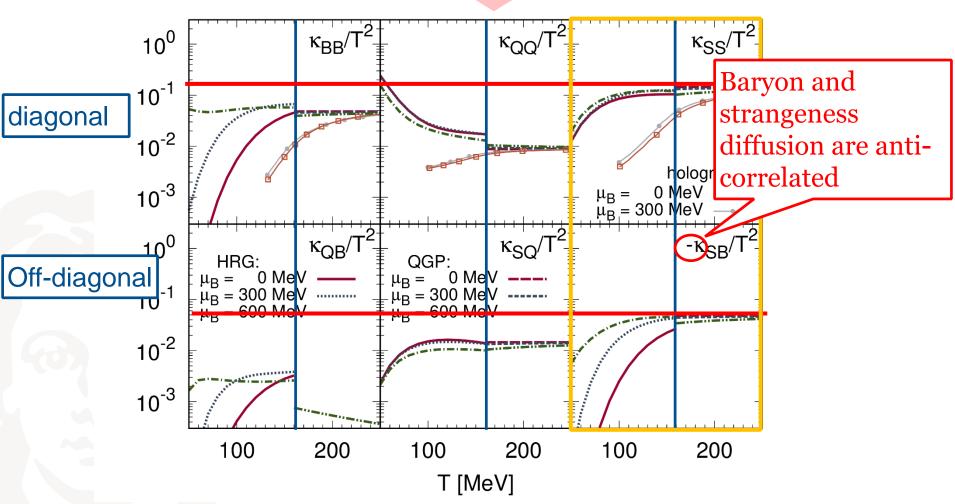


Coefficients in strangeness sector most dominant

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} \ \kappa_{BQ} \ \kappa_{BS} \\ \kappa_{QB} \ \kappa_{QQ} \ \kappa_{QS} \\ \kappa_{SB} \ \kappa_{SQ} \ \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$





Coefficients in strangeness sector most dominant

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} \ \kappa_{BQ} \ \kappa_{BS} \\ \kappa_{QB} \ \kappa_{QQ} \ \kappa_{QS} \\ \kappa_{SB} \ \kappa_{SQ} \ \kappa_{SS} \end{pmatrix}.$$



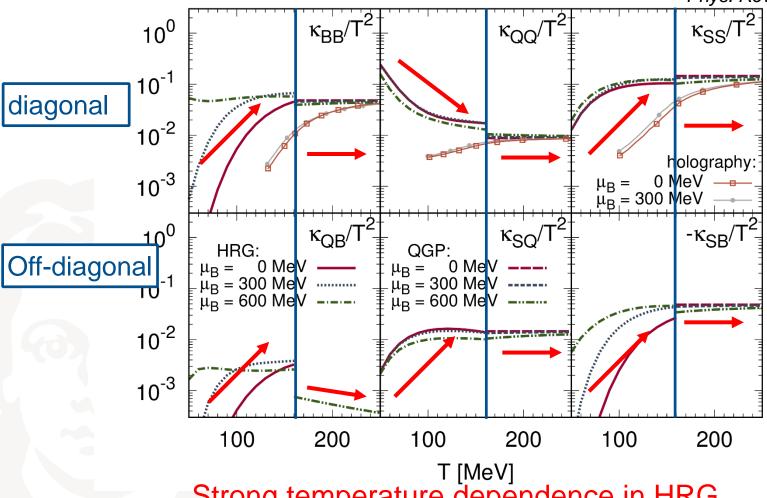
/ UNI Holography:

Rougement et al.,

 $\nabla^{\mu}\alpha_{B}$ 

 $\nabla^{\mu}\alpha_{Q}$ 

Phys. Rev. D 96, 014032 (2017)



Strong temperature dependence in HRG Nearly constant in conformal QGP

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} \ \kappa_{BQ} \ \kappa_{BS} \\ \kappa_{QB} \ \kappa_{QQ} \ \kappa_{QS} \\ \kappa_{SB} \ \kappa_{SQ} \ \kappa_{SS} \end{pmatrix}.$$

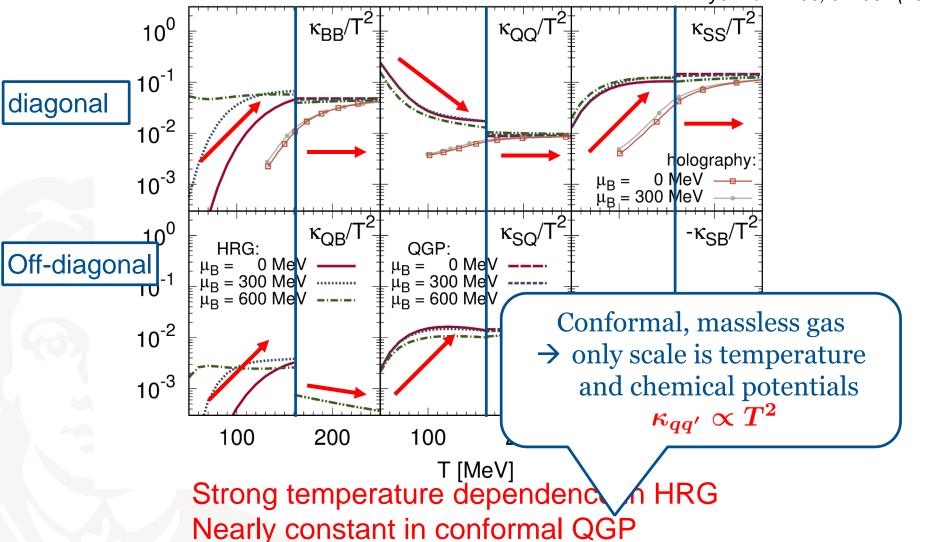


Holography:
Rougement et al.,

 $\nabla^{\mu}\alpha_{B}$ 

 $\nabla^{\mu}\alpha_{Q}$ 

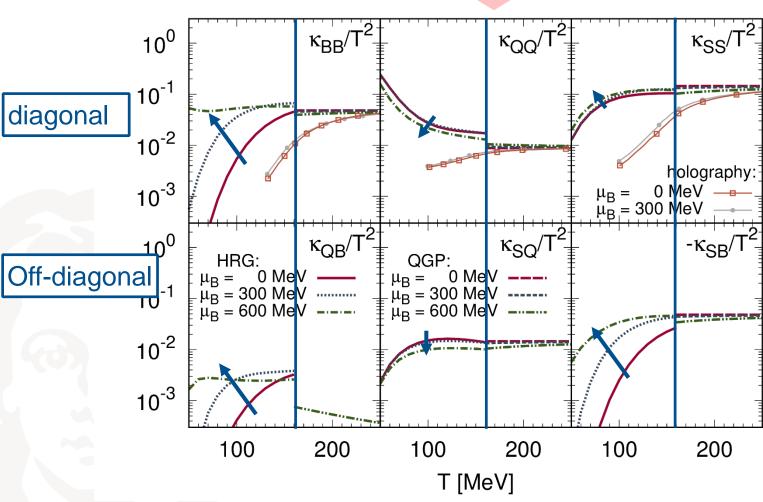
Phys. Rev. D **96**, 014032 (2017)



$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$



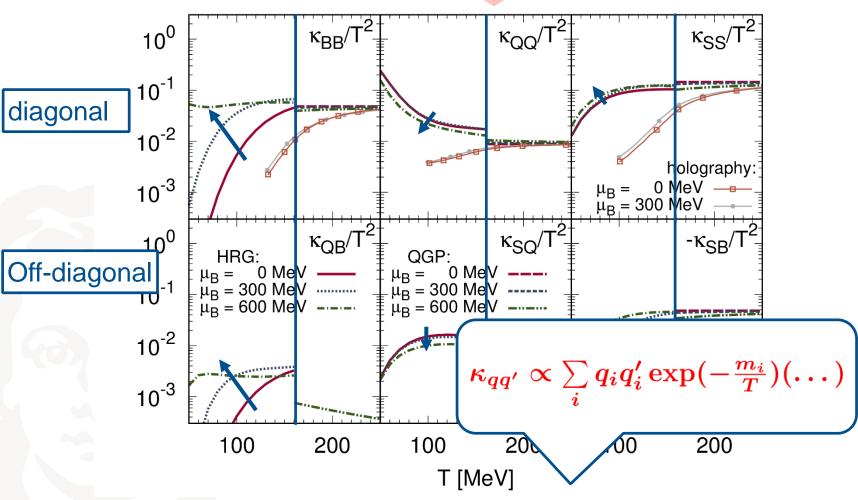


Dependence of coefficients in baryon sector on baryo-chemical potential in HRG

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$



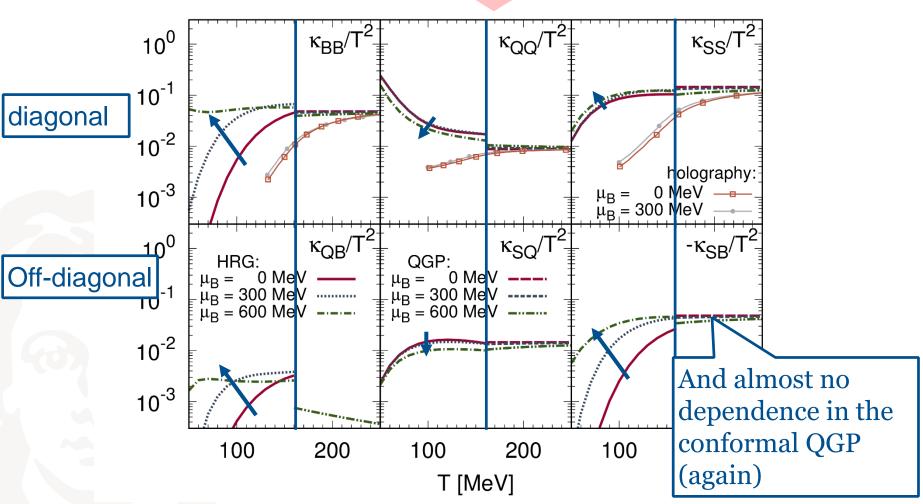


Dependence of coefficients in baryon sector on baryo-chemical potential in HRG

$$n_S=0$$

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$





Dependence of coefficients in baryon sector on baryo-chemical potential in HRG





- First calculation of complete diffusion matrix of baryon, electric and strangeness charges in Navier-Stokes limit with first order Chapman-Enskog expansion
- Classical hadron gas with realistic isotropic cross sections and simple conformal QGP model were used

#### Conclusion



- First calculation of complete diffusion matrix of baryon, electric and strangeness charges in Navier-Stokes limit with first order Chapman-Enskog expansion
- Classical hadron gas with realistic isotropic cross sections and simple conformal QGP model were used

- HRG: dependence of coefficients on temperature and baryochemical potential
- Strong coupling of all gradients to (almost) all currents ->
  large off-diagonal coefficients
- Suggestion: Off-diagonal terms should not be neglected!
- Can be used in (hydro) models

#### Outlook



- Investigate effects of (off-diagonal) diffusion coefficients in viscous hydro simulations:
  - Measurable effects on rapidity distribution (on strangeness?)
  - Initial state correlations (flow harmonics?)
  - Investigate dependence of calculation in terms of new species with higher masses and more carried charge
- Parametrize coefficients
- Compare to other models: SMASH? BAMPS? IQCD?



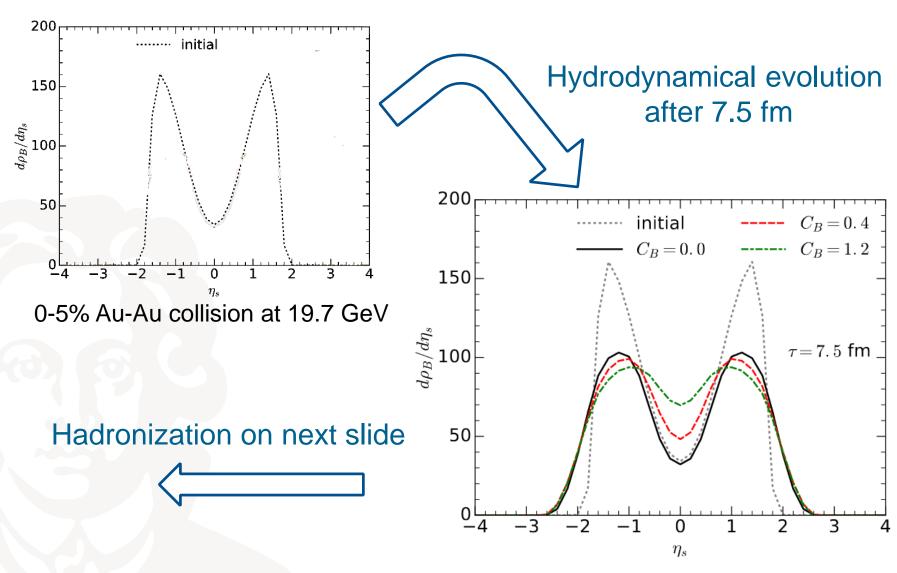
### **BACKUP**



### GOETHE UNIVERSITÄT

#### The Evolution in (3+1)-Viscous Hydro

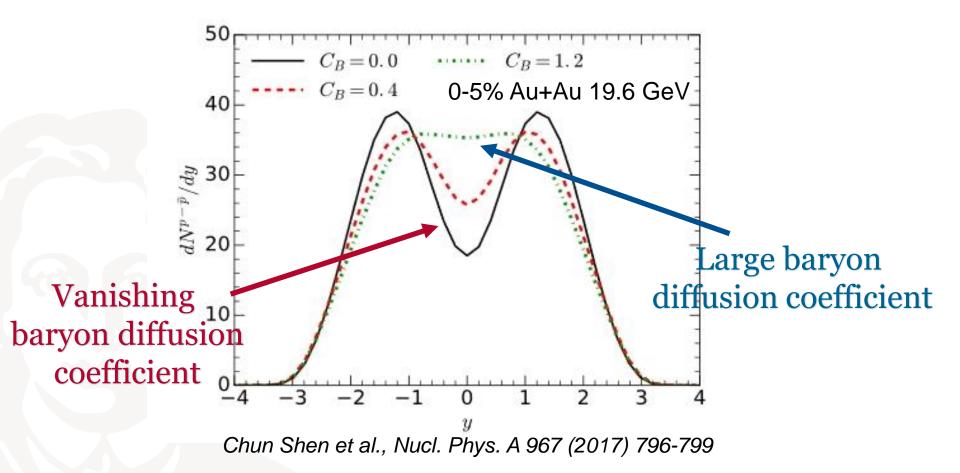
Chun Shen et. al. Nucl. Phys. A 967 (2017) 796-799



## GOETHE UNIVERSITÄT

#### Why could diffusion be important?

 During low-energy HIC (e.g. RHIC BES): diffusion could have great impact on dynamic evolution



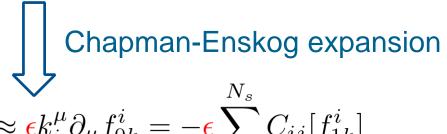
Jan Fotakis





 Relativistic Boltzmann equation determines evolution of system

$$k_i^{\mu} \partial_{\mu} f_k^i = -\sum_{j=1}^{N_s} C_{ij} [f_k^i]$$



$$\epsilon k_i^{\mu} \partial_{\mu} \left( f_{0k}^i + \epsilon f_{0k}^i \right) \approx \epsilon k_i^{\mu} \partial_{\mu} f_{0k}^i = -\epsilon \sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$$

With linearized collision term:

$$\sum_{j=1}^{N_s} C_{ij}[f_{1k}^i] = \sum_{j=1}^{N_s} \gamma_{ij} \int dK'_j dP_i dP'_j W_{kk' \to pp'}^{ij} f_{0k}^i f_{0k'}^j \left( \frac{f_{1k}^i}{f_{0k}^i} + \frac{f_{1k'}^j}{f_{0k'}^j} - \frac{f_{1p}^i}{f_{0p}^i} - \frac{f_{1p'}^i}{f_{0p'}^i} \right)$$

Transition rate: contains (isotropic) cross sections

= information of microscopic interactions





Evaluating derivatives leads to source equation for deviation  $f_{1k}^i$ 

$$k_i^{\mu} \partial_{\mu} f_{0k}^i = -\sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$$



Gradient in thermal potential

$$\sum_{q \in \{B, S, Q\}} f_{0k}^{i} k_{i}^{\mu} \left( \frac{E_{ik} n_{q}}{\epsilon_{0} + P_{0}} - q_{i} \right) \nabla_{\mu} \left( \frac{\mu_{q}}{T} \right) = -\sum_{j=1}^{N_{s}} C_{ij} [f_{1k}^{i}]$$

Sum over all conserved charges

→ coupling of diffusion currents

L.H.S. of eq. ~ force term due to gradients in particle density → Navier Stokes currents





Diffusion currents in kinetic theory:

We want to calculate THIS

$$j_q^{\mu} = \sum_{i=1}^{N_s} q_i \int dK \ k_i^{\langle \mu \rangle} f_{1k}^i \stackrel{!}{=} \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left( \frac{\mu_{q'}}{T} \right)$$

Navier-Stokes limit

In order to do so, we need to solve:

$$\sum_{q \in \{B, S, Q\}} f_{0k}^{i} k_{i}^{\mu} \left( \frac{E_{ik} n_{q}}{\epsilon_{0} + P_{0}} - q_{i} \right) \nabla_{\mu} \left( \frac{\mu_{q}}{T} \right) = -\sum_{j=1}^{N_{s}} C_{ij} [f_{1k}^{i}]$$



#### The Chapman-Enskog Expansion

$$\sum_{q \in \{B, S, Q\}} f_{0k}^{i} k_{i}^{\mu} \left( \frac{E_{ik} n_{q}}{\epsilon_{0} + P_{0}} - q_{i} \right) \nabla_{\mu} \left( \frac{\mu_{q}}{T} \right) = -\sum_{j=1}^{N_{s}} C_{ij} [f_{1k}^{i}]$$

Since collision term is linear in  $f_{1k}^i$  the solutions have the general form:

scalar function in energy

$$f_{1k}^i = \sum_q a_q^i k_i^\mu \nabla_\mu \left(\frac{\mu_q}{T}\right)$$

Expand coefficients in power series in energy:

$$a_q^i = \sum_{m=0}^{\infty} a_{q,m}^i E_{ik}^m$$

# GOETHE UNIVERSITÄT FRANKFURT AM MAIN

#### The Chapman-Enskog Expansion

$$\sum_{q \in \{B, S, Q\}} f_{0k}^{i} k_{i}^{\mu} \left( \frac{E_{ik} n_{q}}{\epsilon_{0} + P_{0}} - q_{i} \right) \nabla_{\mu} \left( \frac{\mu_{q}}{T} \right) = -\sum_{j=1}^{N_{s}} C_{ij} [f_{1k}^{i}]$$

Truncate series at finite integer M and calculate n-th moment of source equation → set of linear equations for expansion

Coefficients

Solutions of matrix equation 
$$\Rightarrow$$
 gives us  $f_{1k}^i$  
$$\sum_{m=0}^{M} \sum_{j=1}^{N_s} \left(A_{nm}^i \delta^{ij} + C_{nm}^{ij}\right) a_{q,m}^j = b_{q,n}^i$$

moments of collision term >
complicated integrals with information
about microscopic interactions

Source term for diffusion





$$j_q^{\mu} = \sum_{i=1}^{N_s} q_i \int dK \ k_i^{\langle \mu \rangle} f_{1k}^i \stackrel{!}{=} \sum_{q'} \kappa_{qq'} \nabla^{\mu} \left( \frac{\mu_{q'}}{T} \right)$$

By comparing both sides we find:

$$\kappa_{qq'} = \frac{1}{3} \sum_{i=1}^{N_s} q_i \sum_{m=0}^{M} \frac{a_{q',m}^i}{a_{q',m}^i} \int dK_i E_{ik}^m (m^2 - E_{ik}^2) f_{0k}^i$$

In our most detailed calculation: M = 1 and  $N_s = 19$ 

## GOETHE UNIVERSITÄT FRANKFURT AM MAIN

#### The Relaxation Time Approximation

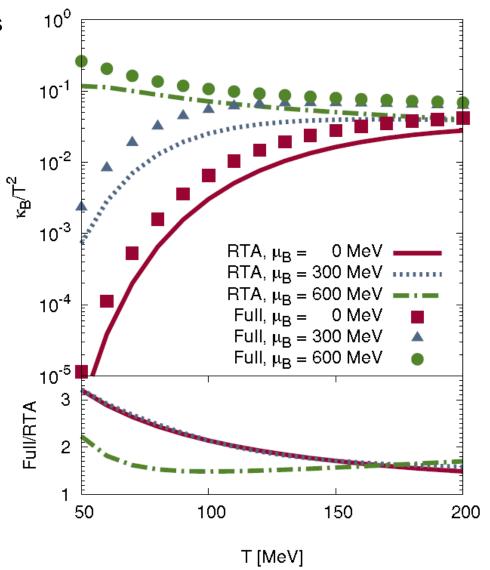
Calculated for p n  $\bar{p}$   $\bar{n}$  K  $\pi$  gas (11 hadron species)

$$\sum_{i=1}^{N_s} C_{ij}[f_{1k}^i] = -\frac{E_{ik}}{\tau} f_{1k}^i$$

#### Relaxation time:

Total baryon density

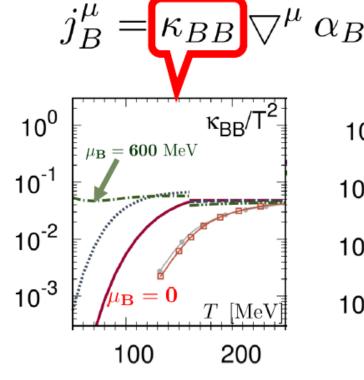
$$au^{-1}=rac{2}{3}n_{B, ext{tot}}\sigma_0$$

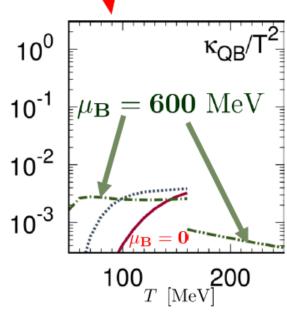


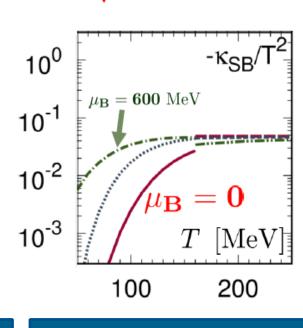
### Baryon current

$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} \ \kappa_{BQ} \ \kappa_{BS} \\ \kappa_{QB} \ \kappa_{QQ} \ \kappa_{QS} \\ \kappa_{SB} \ \kappa_{SQ} \ \kappa_{SS} \end{pmatrix} .$$









- Largest contribution
- Nearly constant at  $\mu_B = 600 \, MeV$
- So far only used coefficient

- Much smaller than others
- QGP-part vanishes at  $\mu_B = 0$
- Strong  $\mu_B$  dependence

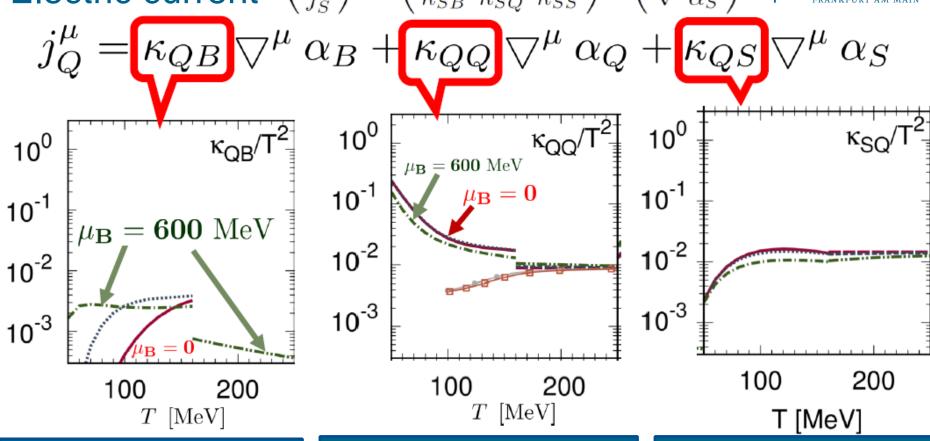
- Negative contribution!
- Similar strength as  $\kappa_{BB}$
- Could drastically reduce baryon current



$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} \ \kappa_{BQ} \ \kappa_{BS} \\ \kappa_{QB} \ \kappa_{QQ} \ \kappa_{QS} \\ \kappa_{SB} \ \kappa_{SQ} \ \kappa_{SS} \end{pmatrix}.$$



 $\nabla^{\mu}\alpha_{B}$ 



- Smaller than others
- QGP-part vanishes at  $\mu_B = 0$
- Strong  $\mu_B$  dependence

- $\mu_B = 0$  same as electric conductivity
- Only decreasing behavior in T

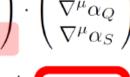
QGP: strongest contribution

Strangeness current 
$$\begin{pmatrix} j_B^{\mu} \\ j_Q^{\mu} \\ j_S^{\mu} \end{pmatrix} = \begin{pmatrix} \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\ \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\ \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \end{pmatrix} \cdot \begin{pmatrix} \nabla^{\mu} \alpha_B \\ \nabla^{\mu} \alpha_Q \\ \nabla^{\mu} \alpha_S \end{pmatrix}$$

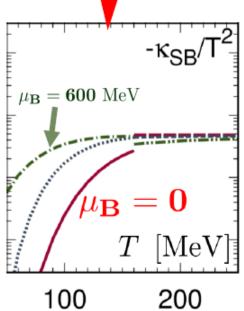


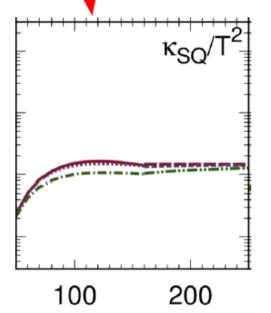
$$j_S^{\mu} = \kappa_{SB} \nabla^{\mu} \alpha_B + \kappa_{SQ}$$

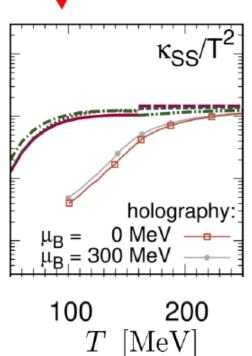












- Negative contribution
- Could also drastically reduce strange currents
- 1 Magnitude smaller than  $\kappa_{SS}$
- **Charged Kaons** contribute to electric currents (see  $\kappa_{OO}$ )
- By far most important contribution