Erwann Masson

Laboratoire Subatech, Nantes

On behalf of the ALICE Collaboration

Hot Quarks 2018, The Netherlands

Direct photons in hadron collisions

► Produced at every stage of the collision, **not affected** by QCD medium → valuable probe

$$\frac{1}{\gamma_{\text{thermal}}} \sim \frac{1/p_{\text{T}} \left(\exp \left(-p_{\text{T}}/T \right) + 1/p_{\text{T}}^{n} \right)}{\gamma_{\text{thermal}}}$$

Prompt photons (pp, p-Pb, Pb-Pb)

- Dominant at high p_T
- Very good description within pQCD at NLO
- Access to parton energy loss (correlations)
- Test p-Pb and Pb-Pb binary scaling

Thermal photons (Pb-Pb)

- Dominant at low pT
- From QGP/hadron gas thermalisation
- Access to medium properties
- Sensitive to QGP space-time evolution

Direct photons at low pT

How to extract direct photons?

Low/intermediate $p_{\rm T}$ component ($\lesssim 10 \, {\rm GeV}/c$) ightarrow subtraction method

• Direct photons \rightarrow all photons except from particle decays

$$\gamma_{\rm direct} = \gamma_{\rm inc} - \gamma_{\rm decay} = \left(1 - \frac{\gamma_{\rm decay}}{\gamma_{\rm inc}}\right) \gamma_{\rm inc} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{\rm inc}$$

Direct photons at low pT

How to extract direct photons?

Low/intermediate p_{T} component ($\lesssim 10 \, \text{GeV}/c$) \rightarrow subtraction method

► Direct photons → all photons except from particle decays

$$\gamma_{\rm direct} = \gamma_{\rm inc} - \gamma_{\rm decay} = \left(1 - \frac{\gamma_{\rm decay}}{\gamma_{\rm inc}}\right) \gamma_{\rm inc} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{\rm inc}$$

► Direct photon excess ratio $R_{\gamma} = \frac{\gamma_{\text{inc}}}{\gamma_{\text{decay}}} \equiv \frac{\gamma_{\text{inc}}}{\pi_{\text{param}}^0} / \frac{\gamma_{\text{decay}}}{\pi_{\text{param}}^0}$

($\gamma_{\rm inc}$ = measured, $\gamma_{\rm decay}$ = simulated, $\pi_{\rm param}^0$ = parametrised)

How to extract direct photons?

Low/intermediate $p_{\rm T}$ component ($\lesssim 10 \, {\rm GeV}/c$) ightarrow subtraction method

► Direct photons → all photons except from particle decays

$$\gamma_{\rm direct} = \gamma_{\rm inc} - \gamma_{\rm decay} = \left(1 - \frac{\gamma_{\rm decay}}{\gamma_{\rm inc}}\right) \gamma_{\rm inc} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{\rm inc}$$

► Direct photon excess ratio $R_{\gamma} = \frac{\gamma_{\text{inc}}}{\gamma_{\text{decay}}} \equiv \frac{\gamma_{\text{inc}}}{\pi_{\text{param}}^0} / \frac{\gamma_{\text{decay}}}{\pi_{\text{param}}^0}$

 $(\gamma_{\rm inc} = {\rm measured}, \gamma_{\rm decay} = {\rm simulated}, \pi^0_{\rm param} = {\rm parametrised})$

High p_{T} component (\gtrsim 10 GeV/c) \rightarrow isolation method

v X. s=14 TeV. v=0 Strong reduction of X. 5=14 TeV, v=0 -> ~ a (Compton) parton g 1.2 $\gamma_{\rm frag}$ and $\gamma_{\rm decay}$ contributions JETPHOX 1.1 (CTEQ6.6, µ=E^Y₇) JETPHOX 1.1 (CTEQ6.6, µ=E₁) 3o.a Access to γ_{L0} (hard pro-0.6 0.6 duced γ_{direct}) 0.4 0.2 Phys. Rev. D 82, 014015 (2010) 10 20 30 1000 20.30 100 200 1000 E^Y₇ (GeV) E^Y (GeV)

Tracking ($|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$)

- **ITS** Primary/secondary vertex determination
- **TPC** Tracking and particle identification (PID)

Tracking ($|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$)

- ITS Primary/secondary vertex determination
- TPC Tracking and particle identification (PID)

Calorimetry

Triggering

 $\begin{array}{ll} \text{VO} & \text{Minimum bias, luminosity and centrality measurement} \\ + \text{extended } p_{\text{T}} \text{ reach thanks to EMCal and PHOS triggering capabilities} \end{array}$

- PHOS Lead tungstate crystals
 - $|\eta| < 0.12,260^{\circ} < \varphi < 320^{\circ}$

Photon reconstruction techniques

Photon Conversion Method (PCM)

- Based on photon conversion in detector material (ITS, TPC)
- Reconstruction of neutral particle secondary vertices V⁰ from close tracks
- ▶ Selection criteria on $V^0 \rightarrow$ candidate photons
- \blacktriangleright Small conversion probability $\lesssim~9\%$ but very good energy resolution $\sim~1.6\%$ at low p_{T}

Photon reconstruction techniques

Photon Conversion Method (PCM)

- Based on photon conversion in detector material (ITS, TPC)
- Reconstruction of neutral particle secondary vertices V⁰ from close tracks
- ▶ Selection criteria on $V^0 \rightarrow$ candidate photons
- ▶ Small conversion probability \lesssim 9% but very good energy resolution \sim 1.6% at low $p_{\rm T}$

PHOS and EMCal (EMC)

- ► Direct measurement of photon deposited energy in adjacent calorimeter cells → grouped in clusters for reconstructing photon energy
- ► Selection criteria on clusters → candidate photons
- Poorer energy resolution at low p_T but higher statistic at high p_T (γ triggers)
- ► Three independent techniques to measure direct photons in overlapping p_T ranges → possible combination to reduce uncertainties and cover a broad p_T range

Photon reconstruction techniques, π^0 reconstruction performance

- ▶ π^0 mesons enter R_{γ} computation through $\pi^0_{param} \rightarrow$ reconstructed with the same techniques as inclusive photons
- Best resolution on the π^0 mass peak with PCM

Motivation and method	ALICE

Direct photons at low p_{T}

Subtraction ingredients

$$R_{\gamma} = rac{\gamma_{
m inc}}{\pi_{
m param}^0} \Big/ rac{\gamma_{
m decay}}{\pi_{
m param}^0}$$

Direct photons at low pT

Subtraction ingredients

 $\gamma_{\rm inc}$

- Inclusive photon yield measured with different techniques
- Systematic uncertainties dominated by p_T-independent material budget (PCM), global *E* scale (PHOS) or clustering (EMC)

Direct photons at low pT

Subtraction ingredients

 γ_{inc}

 $\gamma_{\rm decay}$

- Inclusive photon yield mea sured with different techniques
- ➤ Systematic uncertainties dominated by p_T-independent material budget (PCM), global E scale (PHOS) or clustering (EMC)
- Decay photon spectrum
 → cocktail simulation
 - Mother particle abundances based on parametrised measured spectra (or m_T scaling)

- Inclusive photon yield mea sured with different techniques
- Systematic uncertainties dominated by p_T-independent material budget (PCM), global E scale (PHOS) or clustering (EMC)
- Decay photon spectrum
 → cocktail simulation
 - Mother particle abundances based on parametrised mea sured spectra (or m_T scaling)
- Measured through π⁰ → γγ decay channel with the same techniques as γ_{inc} for cancelling uncertainties
 - π⁰ spectrum parametrised with different models

Direct photons at low $p_{\rm T}$, pp at $\sqrt{s} = 2.76 \, {\rm TeV}$

arXiv:1803.09857

► Three independent reconstruction techniques → good agreement between them

Direct photon measurements with the ALICE Experiment at LHC - Erwann Masson, Laboratoire Subatech

Direct photons at low $p_{\rm T}$, pp at $\sqrt{s} = 2.76 \, {\rm TeV}$

- ► Three independent reconstruction techniques → good agreement between them
- Combination using the BLUE method → uncertainty correlation treatment
- At low p_T, no excess observed within uncertainties
 → supports Pb–Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)

Direct photons at low $p_{\rm T}$, pp at $\sqrt{\rm s}=$ 2.76 TeV

arXiv:1803.09857

- ► Three independent reconstruction techniques → good agreement between them
- Combination using the BLUE method → uncertainty correlation treatment
- At low p_T, no excess observed within uncertainties → supports Pb-Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)

- ▶ Covering very low p_T, 0.4 < p_T < 10 GeV/c</p>
- ▶ 90% C.L. (arrows) → points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Paquet PRC 93, 2016, Vogelsang PRD 67, 2003, JETPHOX, POWHEG)

Direct photons at low p_{T} , pp at $\sqrt{s} = 8 \text{ TeV}$

 Instructure
 DALICE
 pp, √s = 8 TeV

 Instructure
 Instructure
 Instructure
 Instructure

 Instructure

- ► Three independent reconstruction techniques → good agreement between them
- Combination using the BLUE method → uncertainty correlation treatment
- At low p_T, no excess observed within uncertainties
 → supports Pb–Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with pQCD at NLO (prompt photons)

- ▶ Covering very low $p_{\rm T}$, 0.3 < $p_{\rm T}$ < 16 GeV/c
- ▶ 90% C.L. (arrows) → points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Paquet PRC 93, 2016, Vogelsang PRD 67, 2003, JETPHOX, POWHEG)

Direct photons at low $p_{\rm T},$ p–Pb at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$

► Four independent reconstruction techniques → good agreement between them

Direct photons at low $p_{\rm T},$ p–Pb at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$

- Four independent reconstruction techniques → good agreement between them
- Combination using the BLUE method → uncertainty correlation treatment
- At low p_T, no excess observed within uncertainties
 → supports Pb–Pb medium-induced enhancement scenario
- For p_T > 7 GeV/c, ~ 1σ deviation consistent with binary scaled pQCD at NLO

- ▶ Covering 0.3 < p_T < 32 GeV/c</p>
- ▶ 90% C.L. (arrows) → points where R_{γ} agrees with unity within uncertainties
- Consistent with pQCD (Vogelsang PRD 67, 2003) and a hydrodynamic model (Shen PRC 95, 2017)

- ▶ Two reconstruction techniques combined (PCM, PHOS) → covering **very low** $p_{\rm T}$, 0.9 < $p_{\rm T}$ < 14 GeV/c
- ► For p_T > 5 GeV/*c*, R_γ excess consistent with binary scaled pQCD prompt photons in each centrality class
- At low p_T, 10-15% excess observed in central collisions → another source of photons

Direct photons at low p_{T} , Pb–Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Phys. Lett. B 754 (2016) 235-248

- ▶ Two reconstruction techniques combined (PCM, PHOS) → covering **very low** $p_{\rm T}$, 0.9 < $p_{\rm T}$ < 14 GeV/c
- For p_T > 5 GeV/c, R_γ excess consistent with binary scaled pQCD prompt photons in each centrality class
- At low p_T, 10-15% excess observed in central collisions → another source of photons

Photon reconstruction at high p_{T}

Neutral clusters (charged particle veto)

 Clusters spatially matching a track (charged clusters) must be rejected

$$\Delta \eta = |\eta_{\text{clus}} - \eta_{\text{track}}| > 0.02$$

$$\Delta \varphi = |\varphi_{\text{clus}} - \varphi_{\text{track}}| > 0.03$$

Photon isolation and purity estimation

Isolated photons

 Isolation cone of radius R_{cone} defined around a candidate photon at (η_γ, φ_γ)

$$\mathbf{R}_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2} \ (= 0.4)$$

Photon declared isolated if

 $\sum_{\text{cone}} \textit{p}_{\text{T}}^{\text{neutral+charged}} < \textit{p}_{\text{T}}^{\text{max}} \ (= 2 \, \text{GeV} / \textit{c})$

Photon isolation and purity estimation

Isolated photons

 Isolation cone of radius R_{cone} defined around a candidate photon at (η_γ, φ_γ)

$$\mathbf{R}_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2} \ (= 0.4)$$

Photon declared isolated if

 $\sum_{\text{cone}} p_{\text{T}}^{\text{neutral+charged}} < p_{\text{T}}^{\text{max}} \ (= 2 \, \text{GeV} / \textit{c})$

Purity estimation: the ABCD method Phys. Rev. D 83, 052005 (2011)

► Part of region (A) clusters truly induced by γ_{direct} → **purity** of the N_n^{iso} sample

$$P = \mathbf{S}_{n}^{iso} / \mathbf{N}_{n}^{iso} = 1 - \frac{\mathbf{B}_{n}^{iso}}{\mathbf{N}_{n}^{iso}}$$

Background B^{iso} estimated with data and corrected with simulation

$$\mathbb{P}_{\text{corr}} = 1 - \left(\frac{\boldsymbol{B}_{n}^{\text{iso}} \times \boldsymbol{N}_{w}^{\overline{\text{iso}}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\overline{\text{iso}}}} \right)_{\text{simu}} \times \left(\frac{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\overline{\text{iso}}}}{\boldsymbol{N}_{w}^{\overline{\text{iso}}} \times \boldsymbol{N}_{n}^{\overline{\text{so}}}} \right)_{\text{data}}$$

Direct photon measurements with the ALICE Experiment at LHC – Erwann Masson, Laboratoire Subatech

14

Isolated photons, pp at $\sqrt{s}=$ 7 TeV

- ► At high **E**_T, **high purity** ~ **80**% reached
- Systematic uncertainties dominated by cluster shower shape modelling (imperfect reproduction in simulation)

Isolated photons, pp at $\sqrt{s} = 7$ TeV

- At high E_T, high purity ~ 80 % reached
- Systematic uncertainties dominated by cluster shower shape modelling (imperfect reproduction in simulation)

- ► EMCal photon triggered data → covering 10 < E_T < 60 GeV
- Good agreement with pQCD calculations at NLO (JETPHOX)

Isolated photons, pp at $\sqrt{s}=$ 7 TeV

- Reasonable agreement with the ATLAS and CMS measurements in the overlapping E_T region
- ► Lower E_T reach → potential constraints on prompt photons and therefore on thermal photons in Pb-Pb collisions
- ► Preliminary result → final checks ongoing

Isolated photon raw yield and purity, p–Pb at $\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}$

► Greater underlying event contribution in p-Pb collisions → estimated in perpendicular cones and subtracted from the isolation cone before isolation

- ► Raw yield → direct photon signal + contamination
- E_T reach similar to pp measurement

Isolated photon raw yield and purity, p–Pb at $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$

► Greater **underlying event** contribution in p-Pb collisions → estimated in perpendicular cones and **subtracted from the isolation cone** before isolation

- ► Raw yield → direct photon signal + contamination
- Purity from ~ 30% to ~ 70% over the probed photon energy range

- E_T reach similar to pp measurement
- ► Final corrections and systematic uncertainties being applied → isolated photon cross section coming soon

Conclusions and outlook

Direct photons at low p_{T} , subtraction method

- Measurement from p_T = 0.3 GeV/c to p_T = 32 GeV/c in pp, p-Pb and Pb-Pb collisions at different centre-of-mass energies thanks to the ALICE independent reconstruction techniques
- ▶ Results compatible with pQCD calculations at NLO for $p_T > 7 \text{ GeV}/c \rightarrow \text{prompt photons}$
- ▶ Low p_T excess observed in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV \rightarrow compatible with a thermal radiation

Direct photons at high p_{T} , isolation method

- ▶ Measurement from $E_T = 10$ GeV to $E_T = 60$ GeV in pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- Results compatible with pQCD calculations at NLO and in agreement with ATLAS and CMS
- ALICE extends the E_T reach to lower values compared to ATLAS and CMS

Conclusions and outlook

Outlook

- ▶ Isolated photon cross section in p-Pb collisions at $\sqrt{s} = 5.02$ TeV \rightarrow comparison with pQCD
- Isolated photon $R_{pA} \rightarrow$ binary scaling test
- ▶ γ -hadron and γ -jet **correlations** → parton energy loss studies

Conclusions and outlook

Outlook

- ▶ Isolated photon cross section in p-Pb collisions at $\sqrt{s} = 5.02$ TeV \rightarrow comparison with pQCD
- Isolated photon $R_{pA} \rightarrow$ binary scaling test
- γ -hadron and γ -jet **correlations** \rightarrow parton energy loss studies

Thanks for your attention!

Backup

PCM reconstruction technique and ALICE central barrel

• " γ -ray tomography" used to determine the **material budget** $\rightarrow \sim 4.5$ % in PCM measurement systematic uncertainties

EMCal, the ALICE ElectroMagnetic Calorimeter

Specifications

- 12 supermodules → 3072 modules → 12288 cells with a 6 × 6 cm² area
- Each cell → 153 lead/scintillator alternating layers (24.6 cm thick in total)
- Energy/position resolutions $\rightarrow 4.8 \,\%/E \oplus 11.3 \,\%/\sqrt{E} \oplus 1.7 \,\%$ and 5.3 mm/ $\sqrt{E} \oplus 1.5$ mm
- Covers |η_γ| < 0.7 and 100° in azimuth (φ)
- Used as trigger detector (γ/jets)

Isolated photons, p–Pb at $\sqrt{s_{\text{NN}}}=$ 5.02 TeV

Specifications

- Run I data, EMCal γ triggers at 11 GeV and 7 GeV
- Integrated luminosity → L_{int} = 4.64 ± 0.41 nb⁻¹

A Larger contribution from the **underlying event (UE)** in p–Pb than in pp collisions

 \blacktriangleright Underlying event \rightarrow all processes but the hardest LO parton interaction

Isolated photons, underlying event estimation

► UE estimated and subtracted before isolation, event-by-event → p^{iso}_T - ρ_{UE} × A_{cone} < 2 GeV/c</p>

Method	Pros	Cons
⊥ cones	– Far from the isolation cone – Can be crosschecked with ALICE PHOS	– Neutral part not measurable
η -band	– Neutral and charged parts both measurable	- Affected by a hard contribution from cone
arphi-band	– Neutral and charged parts both measurable	– Affected by a hard contribution from cone – Possibly sensitive to the opposite jet

► Charged UE measurement in perpendicular cones then "neutral + charged" extrapolation → isolation using neutral + charged particles

Isolated photons, signal extraction

$\sigma_{ m long}^2$ limit	10 - 12	12 - 16	16 - 18	18 - 60
narrow min	0.10	0.10	0.10	0.10
narrow max	0.40	0.35	0.32	0.30
wide min	0.60	0.45	0.35	0.33
wide max	2.10	1.95	1.85	1.83

- ► Isolation crit. (A, B) → p^{iso}_T < 2 GeV/c</p>
- ▶ Anti-isolation crit. ((C), (D)) → p_{T}^{iso} > 3 GeV/c

The ABCD method (Phys. Rev. D 83, 052005 (2011))

- Mainly signal region
 A = isolated narrow clusters (iso, n)
- Mainly background regions
 - **B** = isolated wide clusters (iso, w)
 - = non-isolated narrow clusters (iso, n)
 - \mathbf{D} = non-isolated wide clusters (iso, w)

Particle quantities

- S = γ_{direct} signal
- **B** = background (π^0 , η , their γ_{decay} , etc.)
- $N = S + B \rightarrow$ what is measured
- ► Part of region (A) clusters truly induced by $\gamma_{\text{direct}} \rightarrow \textbf{purity}$ of the $N_{\text{n}}^{\text{iso}}$ sample

$$\mathbb{P} = m{S}_{n}^{
m iso}/m{N}_{n}^{
m iso} = 1 - m{B}_{n}^{
m iso}/m{N}_{n}^{
m iso}$$

 Background B^{iso} estimated with data and corrected with MC

Direct photon measurements with the ALICE Experiment at LHC - Erwann Masson, Laboratoire Subatech

Isolated photons, purity estimation

Data-driven background estimation in signal region A

$$\boldsymbol{B}_{n}^{iso} = \frac{\boldsymbol{N}_{w}^{iso} \times \boldsymbol{N}_{n}^{iso}}{\boldsymbol{N}_{w}^{iso}} \Rightarrow \mathbb{P} = 1 - \frac{\boldsymbol{B}_{n}^{iso}}{\boldsymbol{N}_{n}^{iso}} = 1 - \left(\frac{\boldsymbol{N}_{w}^{iso} \times \boldsymbol{N}_{n}^{iso}}{\boldsymbol{N}_{w}^{iso} \times \boldsymbol{N}_{n}^{iso}}\right)_{data}$$

- ▶ Possibly signal contamination in background regions (B), (e) and (D) and non-constant background isolation probability → purity must be corrected using MC simulations
- ► Jet-jet (JJ, **background**) + γ -jet (GJ, **signal**) \rightarrow mixed and used to compute a **correction factor** α

$$\alpha = \underbrace{\frac{\left(\mathbf{B}_{n}^{\text{iso}}\right)_{\text{JJ}}}{\left(\mathbf{B}_{n}^{\text{iso}}\right)_{\text{MC mix}}}}_{\text{estimated bkg.}} \Rightarrow \mathbb{P}_{\text{corr}} = 1 - \underbrace{\left(\frac{\mathbf{B}_{n}^{\text{iso}} \times \mathbf{N}_{w}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}\right)_{\text{MC}}}_{\alpha} \times \left(\frac{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}\right)_{\text{data}}$$

Isolated photons, purity correction, p–Pb at $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$

• α rises from lower to greater than unity \rightarrow raw purity \mathbb{P} is clearly **underestimated (overestimated) at low (high) photon** E_{T}

Isolated photon luminosity, p–Pb at $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$

▶ $\sigma_{\rm min\,\,bias}$ measured with vdM scans ~ 2.1 b (JINST 9, P11003 (2014))

Here → L_{int} = 4.64 ± 0.41 nb⁻¹ (systematic uncertainty obtained by multi-varying R_{trig} fit ranges)