

Measurement of Λ_c^+ baryon production in p-Pb collisions with ALICE at the LHC

Christopher Hills

for the ALICE collaboration

University of Liverpool

- ALICE is optimised to detect products of heavy-ion collisions at ultrarelativistic energies.
- These collisions provide the best experimental conditions to produce the Quark-Gluon Plasma (QGP).
- By observing the particle distribution/production QGP properties can be probed.

Event display for a 5.02TeV Pb-Pb collision from 2015

Why look at heavy-flavour particles in these heavy-ion collisions?

- Heavy quarks (c,b) are produced primarily in hard scatterings at the early stages of the collisions and experience the entire evolution of the QGP.
- Heavy quarks are unlikely to be produced thermally by the QGP.
- Propagation of these quarks through the medium can provide quantitative information on energy loss, transport and hadronisation processes.

Why look at heavy-flavour particles in these heavy-ion collisions?

- Heavy quarks (c,b) are produced primarily in hard scatterings at the early stages of the collisions and experience the entire evolution of the QGP.
- Heavy quarks are unlikely to be produced thermally by the QGP.
- Propagation of these quarks through the medium can provide quantitative information on energy loss, transport and hadronisation processes.

What about smaller systems?

- p-Pb
- pp

Why look at heavy-flavour particles in these heavy-ion collisions?

- Heavy quarks (c,b) are produced primarily in hard scatterings at the early stages of the collisions and experience the entire evolution of the QGP.
- Heavy quarks are unlikely to be produced thermally by the QGP.
- Propagation of these quarks through the medium can provide quantitative information on energy loss, transport and hadronisation processes.

What about smaller systems?

- p-Pb
- pp

p-Pb collisions

- Traditionally used to disentangle 'hot' and 'cold' effects.
- Collective effects in small systems?

Why look at heavy-flavour particles in these heavy-ion collisions?

- Heavy quarks (c,b) are produced primarily in hard scatterings at the early stages of the collisions and experience the entire evolution of the QGP.
- Heavy quarks are unlikely to be produced thermally by the QGP.
- Propagation of these quarks through the medium can provide quantitative information on energy loss, transport and hadronisation processes.

- p-Pb
- pp

p-Pb collisions

- Traditionally used to disentangle 'hot' and 'cold' effects.
- Collective effects in small systems?

$\tau \leq 1 \text{ fm/c}$

pp collisions

- Test pQCD predictions
- Reference to larger systems

Why look at charmed baryons?

- Not many measurements available for charmed baryons (Λ_c⁺) especially at LHC energies.
- These measurements of charmed baryon production are required to get a baryon/meson (b/m) ratio.
- b/m ratios are sensitive to hadronisation processes in the system.

Why look at charmed baryons?

- Not many measurements available for charmed baryons (Λ_c⁺) especially at LHC energies.
- These measurements of charmed baryon production are required to get a baryon/meson (b/m) ratio.
- b/m ratios are sensitive to hadronisation processes in the system.

What are the different hadronisation processes?

- 1. Fragmentation [1]
- 2. Recombination [2]

References:

M. Cacciari et al., JHEP 10, 137 (2012), 1205.6344.
 S. H. Lee et al., Phys. Rev. Lett. 100, 222301 (2008), 0709.3637.

Why look at charmed baryons?

- Not many measurements available for charmed baryons (Λ_c⁺) especially at LHC energies.
- These measurements of charmed baryon production are required to get a baryon/meson (b/m) ratio.
- b/m ratios are sensitive to hadronisation processes in the system.

What are the different hadronisation processes?

- 1. Fragmentation [1]
- 2. Recombination [2]

References:

M. Cacciari et al., JHEP 10, 137 (2012), 1205.6344.
 S. H. Lee et al., Phys. Rev. Lett. 100, 222301 (2008), 0709.3637.

Fragmentation:

- Quarks created from the QCD vacuum.
- Indicated by a low b/m ratio.

Plumari et

ച

Eur. Phys. J. C

(2018)

78:

348

Why look at charmed baryons?

- Not many measurements available for charmed baryons (Λ_c⁺) especially at LHC energies.
- These measurements of charmed baryon production are required to get a baryon/meson (b/m) ratio.
- b/m ratios are sensitive to hadronisation processes in the system.

What are the different hadronisation processes?

- 1. Fragmentation [1]
- 2. Recombination [2]

References:

M. Cacciari et al., JHEP 10, 137 (2012), 1205.6344.
 S. H. Lee et al., Phys. Rev. Lett. 100, 222301 (2008), 0709.3637.

- Quarks created from the QCD vacuum.
- Indicated by a low b/m ratio.

Recombination:

- Quarks in similar phase space combine into a hadron
- Indicated by a high b/m ratio
- Further enhancement with diquarks.

Measurement of Λ_c^+ baryon in p-Pb

- Here we will look primarily at the Run 2 analysis for the Λ_c⁺→pK⁻π⁺ decay channel with standard cuts.
- This was combined with the $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ channel performed with standard cuts and MVA.
- Six times the statistics of Run 1, the aim is to extend the p_T range covered and cross-check the measurements from Run1.

Reconstructing the Λ_c

Reconstructing the Λ_c

Particle Identification

Background is reduced by use of **Bayesian Particle Identification with** maximum probability criteria.

Particle Identification

Background is reduced by use of Bayesian Particle Identification with maximum probability criteria.

Plots from Eur. Phys. J. Plus 131 (2016) 168

Topological cuts

Features of the decay topology are used to further reduce background. Such as:

- Decay Length
- $Cos\theta_{pointing}$
- Decay product transverse momenta

Cuts are optimised using simulated background and signal events from Monte Carlo.

Signal extraction

Raw Yield is extracted by $p_{\rm T}$ binned Inv. Mass plots

 p_{T} range extended for Run2 with 12-24 GeV/c

Corrections

- The measured Λ_c^+ yield must be corrected to take into account both the efficiency and acceptance of the detector.
- This is done with the use of a Monte Carlo after applying reconstruction, PID and topological selections

- Contribution by Λ_c^+ from decays of heavier beauty hadrons is also subtracted.
- This is estimated by calculations made in perturbative QCD

Results

• The measured cross-sections are compatible within statistical and systematic uncertainties.

Comparison to Run 1

 Large improvement in uncertainties from run-2 data compared to run-1

R_{pPb} & comparison to light flavours

- Results consistent between charmed baryons and mesons, no significant CNM effects.
- Λ_c R_{pPb} described reasonably well by PYTHIA/POWLANG models within uncertainties.

$R_{\rm pPb}$ & comparison to light flavours

- Results consistent between charmed baryons and mesons, no significant CNM effects.
- Λ_c R_{pPb} described reasonably well by PYTHIA/POWLANG models within uncertainties.

• Striking similarity between Λ_c / D_0 and Λ / K_s^0 for both collision systems; p_T shape similar to p/π ratio

^{12/09/2018}

What's next?

Potential future analyses:

- Cross section measurement with MVA method.
- Multiplicity dependent measurement?
- Look at pp collision systems

What's next?

What's next?

- Cross section measurement • with MVA method.
- Multiplicity dependent • measurement?
- Look at pp collision systems ٠ (5TeV pp analysis ongoing)

Summary

- Heavy-Flavour quarks are good probes of the QGP, experiencing the full evolution of the medium
- Measurement of charmed baryon production (from the corresponding b/m ratio) gives sensitivity to hadronisation processes
- Run 2 results have greater precision and an extended $p_{\rm T}$ range compared to Run1
- Striking similarity in p_T shape between the b/m ratios from both light and heavy-flavour
- Plenty of possible extensions to these measurements available!

Thank you for listening!

And thanks to:

A. De Caro, E. Meninno, J. Norman and J. Wilkinson

Back up

Boosted Decision Tree analysis

 One way to improve signal extraction is to employ a multivariate technique. One method (already used in Run1 and for the pK⁰_s channel for Run2) are BDTs.

- A decision tree aims to make successive cuts to separate signal and background.
- Decision trees can be combined into ensembles that classify using a majority vote.

- After training and testing trees on simulation. They can then be applied to data.
- The BDT will give a response between
 0 and 1 indicating background-like and signal-like candidates, respectively.

Lc/D: all systems

Lc/D vs Models

Highlights from Run 1

.

Cross section is consistently underestimated by theoretical models

 Nuclear modification factor, RpPb is consistent with both unity and D meson measurement

$$R_{\rm pPb}(p_{\rm T}) = \frac{1}{A} \frac{{\rm d}\sigma_{\rm pPb} / {\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp} / {\rm d}p_{\rm T}}$$

 $R_{pPb} < 1 =$ suppression $R_{pPb} > 1 =$ enhancement

Highlights from Run 1

- Λ_c^+ /D ratios in pp and p-Pb are compatible
- ALICE measurement systematically higher than LHCb

- Λ_{c}^{+}/D ratio is higher than MC
- model with colour reconnection closer to data
- model tuned to LHCb pp data is even closer

Bayesian PID

Probability of getting
signal S given it is from
particle of species i
$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=e,\mu,\pi,\dots}P(\vec{S}|H_k)C(H_k)}.$$
Probability of track belonging to
particle species i given signal S

Coalescence vs Fragmentation

