
Pixel Tracking on GPUs

Andrea Bocci, Vincenzo Innocente, Matti Kortelainen
Felice Pantaleo, Marco Rovere

3rd CMS Patatrack Hackathon, May 25nd, final report

25/05/18 3rd CMS Patatrack Hackathon - Pixel Tracking on GPUs 2

Heterogenous framework
● add Heterogeneous support to CMSSW

● heterogeneous producer, based on the acquire / produce semantics
● heterogeneous data products

● goals are efficiency and (relative) simplicity
● aim to minimise data transfers between the host and the device(s)

– track data locality

● aim to allow the code to run on the best available device
– currently CUDA and host CPU are supported

● some of the pixel tracking algorithms have been ported
● “raw to cluster” algorithm
● Cellular Automaton algorithm

25/05/18 3rd CMS Patatrack Hackathon - Pixel Tracking on GPUs 3

Tracking on GPU
● port the “raw to cluster” to be a Heterogeneous producer

● side product: “raw to cluster” approach implemented for the CPU
– check if we save any processing time in the production worklow !

● PR made

● port the Cellular Automaton to be a Heterogeneous producer
● reimplement the algorithm for both CPU and CUDA

– to be tested with the latest upstream changes and compiler

● PR made

● port the Riemann Fit to CUDA
● use one thread per fit / track
● debugging work is ongoing, code is not 100% stable

25/05/18 3rd CMS Patatrack Hackathon - Pixel Tracking on GPUs 4

make Eigen more CUDA friendly
● mark the code used by the Riemann Fit as __host__ __device__

● generates many warnings
– hopefully spurious, due to the templated code

● attempt to silence the warning via #pragmas
– leads to wrong code generation

● attempt to use constexpr instead of __host__ __device__
– not feasible (some functions are not really constexpr-compliant)

● next steps
● check if more __host__ __device__ functions are necessary
● integrate the changes as a CMSSW external
● submit the changes upstream to Eigen

25/05/18 3rd CMS Patatrack Hackathon - Pixel Tracking on GPUs 5

compiling CUDA code with clang
● recent clang releases can compile CUDA code

● compile from .cc / .cu to ptx
● call ptxas to assemble it to CUDA architecture-specific object code
● call fatbinary to merge these architecture-specific files
● link the resulting object file with the host binary

● the missing feature is the possibility of splitting the device code in multiple .cu files,
compile them separately, and link the device objects together

● see Separate Compilation and Linking of CUDA C++ Device Code

● the latest development version of clang (7.0.0 from SVN) adds the possibility of compiling
the individual .cu files to relocatable ptx and object code

● we can copy how nvcc links them into a single device binary:
● call nvlink to link the relocatable object files into a single, architecture-specific object file
● call fatbinary to merge these architecture-specific files
● let clang link the resulting object file with the host binary

● a clanvlink script to help with this last step
● contact the clang developers to integrate this functionality into clang

https://devblogs.nvidia.com/separate-compilation-linking-cuda-device-code/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

