

mpi-opt / mpi-learn

Distributed
training & optimization

Training master
rank0

Training worker
rank1

Training worker
rank2

Training worker
group 0, subrank N

W

mpi-learn
https://github.com/duanders/mpi_learn
https://arxiv.org/abs/1712.05878

https://github.com/duanders/mpi_learn
https://arxiv.org/abs/1712.05878

Goal

Provided a dataset, and provided a problem
(type, input, output), obtain the optimum model
for a given figure of merit (fom) in littel time,
using efficiently as much resource as possible.

Input
● A dataset with input and target
● A problem type (regression, classification, ...)
● A function pset→model
● An HPC

skopt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training worker
group 0, subrank2

Training worker
group 0, subrank N

W

● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

Basic Setup

FULLY
FUNCTIONAL

skopt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TM2

TW0

TWN
W

Training master
group 0, subrank 0

TM1

TW0

TWN
W

TMN
M

TW0

TWN
W

● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

M
 training sub-masters

● N
W
 training workers

Sub-Master Setup

TO BE
 TESTEDFULLY

FUNCTIONAL

skopt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TM0
G0F1

TW1
G0F1

TW2
G0F1

TWN
W

G0F1

TM0
G0F0

TW1
G0F0

TW2
G0F0

TWN
W

G0F0

TM0
G0FN

F

TW1
G0FN

F

TW2
G0FN

F

TWN
W

G0FN
F

● One master running the bayesian optimization. Receiving the average
 fom over N

F
 folds of the data

● N
G
 groups of nodes training on a parameter-set on simultaneously

● N
F
 groups nodes running one fold each

● One training master
● N

W
 training workers

K-folding Setup

TO BE
 TESTEDFULLY

FUNCTIONAL

skopt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TW0
GPU2

TW1
GPU2

TWN
W

GPU2

Training master
group 0, subrank 0

TW1
GPU1

TW2
GPU1

TWN
W

GPU1

TW1
GPUN

GPU

TW2
GPUN

GPU

TWN
W

GPUN
GPU

● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training worker groups

● N
GPU

 used for each worker group (either nodes or gpu)

all-reduce Setup

TO BE
 IMPLEMENTEDTO BE

 TESTED

skopt
worker 2

com
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training master
group 0, subrank2

Training master
group 0, subrank N

W

● One master running communication of parameter set
● N

SK
 workers running the bayesian optimization

● N
G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

mpi-skopt Setup

skopt
worker1

TO BE
 IMPLEMENTED

skopt
worker N

SK

Achievements
● Tested the K-Folding mechanism within mpi-opt

➔ Remains to take advantage of the additional and more accurate
information with skopt. Need to do the math, and implement it

➔ Tested sub-master mechanism within mpi-opt
✔ Clarified when it is meant to be useful (downpour : not sound, easgd :

reduces the idling of workers)
➔ Remains to profile and estimate advantage on a more complex problem

than mnist, which converges too fast (we have candidate problems)
● Implemented structural changes for multi-node workers

➔ Remains to integrate horovod for distributed gradient computation
➔ Remains to tie loose ends on process communications inside a worker

● Implemented the pytorch functionality
✔ Enables running on titan-ORNL
✔ Enables multi-gpu gradient computation (summit)
➔ Remains to streamline dual keras-torch support in mpi-opt/learn

● Getting familiar with mpi profiling : tau
● Moving forward with mpi-cuda installation
✗ Not touch any of the skopt parallelisation

Next

Move on with scaling
● Tie loose ends on GAN figure of merit computation

➔ Perform a large scale optimization
➔ Identify bottlenecks

● Interface with a more complex problem, like TOPCLASS
➔ Perform a large scale optimization
➔ Identify bottlenecks

Further on scaling, performance and enabling
● Conclude torch integration (useful on nGPU/node HPC :

summit/dev)
● Conclude horovod integration (useful on 1GPU/node

HPC : CSCS)
● Conclude K-Folding (should help opt-convergence)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

