Hello/Goodbye FPGA

3™ Patatrack Hackathon 25/05/18 Final Scram
Sioni Summers, Lukas Arnold, Shahzad Muzaffar

Aims & Overview

* Newest Intel devices have the best floating point
performance of any FPGASs

 OpenCL promises fast kernel design, convenient
packaging of compute code with host-FPGA interfaces

* Aimed to execute OpenCL code on a Intel FPGA, called
from CMSSW

- Towards porting real computationin a
heterogeneous future

* Wanted to gain experience with these devices and this
way of designing

Challenges

* Sioni:
- New to Intel FPGAs and OpenCL
* Lukas:
- New to OpenCL and CMSSW
* Shahzad
- Never worked with FPGAs
« Working with FPGAs is slow, what can we achieve in 4
days?
 We had never met before!

How we worked

e Split work between host-side and device-side

— Lukas on device-side
— Sioni on host-side

e Shahzad on the compile flow
o All:

- Worked through Intel's example codes

What we achieved

Begin processing the 1lst record. Run 1, Event 1402, LumiSection 29 on st 3 at 25-May-2018 14:32:45.430 CEST

Thread #2: Hello from Altera's OpenCL Compiler!

f

 'Hello world' from CMSSW

e 'scram b' compiles OpenCL kernels for Intel
FPGAs and C++ with OpenCL wrappers

— Compiled for Hardware
— Standalone testing

<bin name="hello_fpga" file="hello_world/host/src/main.cpp common/src/AOCLUtils/*.cpp">
dddddddddddddddddddddd

<flags OPENCL_DEVICE FILES="hello_world/device/hello_world.cl"/>
#To get the example compiled in cmssw env

<flags REM_CXXFLAGS="-Werror=unused-but-set-variable"/>

#Add hello_world specific include path

What we achieved

 Started evaluating compiled kernels
- Thinking about resource usage, data flow

Area report (source view) kalman_kernels.cl

(area utilization values are estimated)

3

Notation file:X > file:Y indicates a function call on line X was inlined using code on line Y. 4
5 {

. 6 /] equivalent to
ALUTS FFs RAMs DSPs Details 7 /] r -= rMeas;

8 // get index of the work item
9 f/int index = get_global_id(8);
18
11 // add the vector elements
12~ for (int L =8; 1 < 2; i++) {
13 r_out[i] = r[i] - rMeas[i];
14 1

Board interface 187600 2152008 326 74 « Platform i... 1598 }

16

17 __kernel void matrix_add{ _ global const float *V,

18 __global const float *VMeas,

19 __global float *restrict R
)

Data control overhead a a a a « State + Fe... 31

{
22 /| equivalent to
/

Function overhead 1578 1585 a a « Kernel dis... 23 | SMatDD R = V + VMeas;
24~ for (int 1 = ie2; i+) {
25~ for {int j j=2; 3+=) {
% kalman_kernels.cl:26 393 649] 4 26 R[1i*2+j] = V[i®*2+j] + VMeas[i*2+]];
}

State 384 384 i} i} 2]

Hardened Fleoating-Point Addix4) a <] (i] 4 31
32 _ _kernel voild matrix_invert(__global const float *R,

Load(x2) 8 264]) ii , __global float *restrict Rinv

36 ﬁj equivalent to
1

Store t 1 o e 37 bool ok = invertPosDefMatrix(R);

3 float ¢ = 1/(R[B]*R[3]-R[1]*R[2]);
49 Rinv[1] = ¢ * (-R[1]};
41 R 2] = * (-R[2]);

Data control overhead e <] a a « State + Fe... 42 R:E:%i} - : ® S[ﬁ:])
43

. . i a4 // get index of the work item

Function overhead 1570 1505 o 0 Kernel dis... 5 {/int index = get_global_id(e);
46 1

¥ kalman_kernels.cl:38 413 765 5 7 a7
48 _ kernel void matrix_project(_ global const float *C,
49 _ global const float *R

¥ kalman_kernels.cl:39 48 48 a 1 - 58 __global float “restrict K

ALUTs FFs RAMs D5Ps

Hardened Floating-Point Add(xd)]]] 4

What we achieved

 Started evaluating compiled kernels
- Thinking about resource usage, data flow

~t—4-kemelmainx adl | kemel marix inver kEmel mabis project
Blockz wil_hik| ECE Efock bk
=]

L
&
@
@
@
L
&
o
@
@
@
@
L2

i
i
[£]
14
]

What we learned

* Lukas

- Some OpenCL (by designing some kernels), CMSSW, tracking
* Sioni

- Some OpenCL and the C++ Wrapper (that it's a bit ugly)
* Shahzad

- About FPGAs, Intel's FPGA tools, and running them!

* All

- Intel OpenCL FPGA compiler is pretty slow... (~3 hrs for a
design that adds 2 numbers)

The Future...

* We want to continue working together with
these devices

 Towards a real algorithm (Kalman Filter)
* Tighten the integration with CMSSW

* Thanks to all the organisers!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

