

Data Analysis R&D

Jim Pivarski

Princeton University - DIANA-HEP

February 5, 2018

Eventual goal

Query-based analysis: let physicists do their analysis by querying a central dataset instead of downloading and managing private skims. *Remove an expensive middleman!*

Existence proof

- 1. I've worked with such systems at several large companies as a statistical consultant, regularly querying terabytes in seconds.
- 2. Just to prepare this talk, I ran a query on Google BigQuery (2 TB in 30 sec). Analysis-as-a-service is common in industry: this one is publicly accessible.

Google BigQuery

COMPOSE QUERY	New (Query 🕐								Q	uery Editor UDF Edi	itor
uery History	1	SELECT timestamp, count	ry code, file	.filename, file.	version, fi	le.type,	url, details.distro.name, details.distro.version, detail:	s.system.name, de	tails.syst	tem.release, detail	s.cpu	E
ab History	2 *	FROM TABLE DATE RANGE([the-psf:pypi.downloa										
	4	TIMESTAMP(*2017-01-20 CURRENT TIMESTAMP()	·),									
er by ID or label	6)			- Iniat		the distance of the second second					
Query 💌		WHERE TILE.project="upr	oot" and deta	ils.installer.na	webib.	and deta	uls.distro.name "Raspbian GNU/Linux"					
No datasets found in this project.												
ase create a dataset or select a new												
project from the menu above.		QUERY - Save Query	Save View	Format Query SI	how Options	0	plete (30.2s elapsed, 1.82 TB processed)			Cot + Enter: run query,	Tab or Ctrl + Space: aut	bocor
	RON	QUERY V BAVE Query	DAVE VIEW	Format Query 51	now Options	Query com	pere (10.25 elapsed, 2.42 To processed)					
ic Datasets												
igquery-public-data:hacker_news	Rest	ults Details						Download as CSV	Download a	as JSON Save as Tak	le Save to Goog	ple 5
igquery-public-data:noaa_gsod	Row	timestamp	country_code	file_filename	file_version	file_type	uri			details_distro_name	details_distro_ver	sior
igquery-public-data:samples	1	2017-11-24 23:26:53.000 UTC	nut	uproot-2.0.2.tar.gz	2.0.2	sdist	/packages/f4/06/91b0cc7d9b5ef9cb071e72b8ce77195baa22a6c99c431680	a144ab858026Aproo	-2.0.2.tar.gz	Raspbian GNU/Linux	9	
sigquery-public-data:usa_names	2	2017-11-24 23:02:03.000 UTC	nut	uproot-2.0.2.tar.gz	2.0.2	sdist	/packages/f4/06/91b0cc7d9b5ef9cb071e72b8ce77195baa22a6c99c431680	a144ab858026Aproo	-2.0.2.tar.gz	Raspbian GNU/Linux	9	
delt-bg:hathitrustbooks	3	2017-12-11 21:51:53.000 UTC	null	uproot-2.5.9.tar.gz	2.5.9	sdist	/packages/7d/b0/ecf6134c205e2678ca28fa749330357631322163849c017t	2fd635822291/uproot	-2.5.9.tar.gz	Raspbian GNU/Linux	8	
gdelt-bg:internetarchivebooks	4	2017-11-30 14:15:25.000 UTC	nul	uproot-2.1.5.tar.gz	2.1.5	sdist	/packages/96/1c/1246d9beae81fbad3fc1d0bd675a0516b4286c23b9afefe92	r3099b/5/6d/uproot-2.:	1.5.tar.gz	Raspbian GNU/Linux	8	
pokerdata:cdc	5	2017-11-30 13:35:34.000 UTC	nut	uproot-2.3.3.tar.gz	2.3.3	sdist	/packages/5d/8b/dc6486334876c81c23034e60dd836fe9b2bf7eb4e5b39df1	a83e1e8aaa23/uproot	-2.3.3.tar.gz	Raspbian GNU/Linux	8	
yo-tic:green	6	2018-01-03 23:50:16.000 UTC	nul	uproot-2.5.15.tar.gz	2.5.15	sdist	/packages/7a/1/c4fcb3b32809!45c03c3d7adfb1051176b6ad35c104040fc9	a38f47b44c/uproot-2.	5.15.tar.gz	Raspbian GNU/Linux	8	
yo-tic.yellow	7	2018-01-03 16:47:34.000 UTC	null	uproot-2.5.14.tar.gz	2.5.14	sdist	/packages/e8/65/858td40c433c9a1034fa3062897ff3aa19a58c2d80d596fdb	bf6df573c2t/uproot-2.5	5.14.tar.gz	Raspbian GNU/Linux	8	
	8	2017-11-04 02:11:29.000 UTC	null	uproot-1.0.1.tar.gz	1.0.1	sdist	/packages/d3/50/4af1773d449a454ee31e20278ec114bceba1bc473b636a1	1685d40b6552f/uproo	t-1.0.1.tar.gz	Raspbian GNU/Linux	8	
	9	2017-11-04 02:11:54.000 UTC	nul	uproot-1.4.2.tar.gz	1.4.2	sdist	/packages/e1/9b/6ae6cc054af7e61fecc7cfb45b7a18c0f3c06dcfd1a596ca2c	:b844f84a93/uproot-1.	4.2.tar.gz	Raspbian GNU/Linux	8	
	10	2017-11-04 02:12:01.000 UTC	null	uproot-1.6.0.tar.gz	1.6.0	sdist	/packages/96/0c/7a7f934b1e7a9a302e8ef16edc030ba17e5759141ed9e86	aaefbb0464734/uproof	-1.6.0.tar.gz	Raspbian GNU/Linux	8	
	11	2017-11-04 02:11:55.000 UTC	null	uproot-1.5.3.tar.gz	1.5.3	sdist	/packages/60/14/bfa043c970b66b6f73fe0765ffdeec5964338c2a29301cc2a	1c7740be209/uproot-3	.5.3.tar.gz	Raspbian GNU/Linux	8	
	12	2017-11-04 02:11:55.000 UTC	null	uproot-1.5.0.tar.gz	1.5.0	sdist	/packages/b7/12/3fd299b2fd9c2076d491933ac7a1177ade4a0d715fbc56be	b8e14c91cf66/uproot-	1.5.0.tar.gz	Raspbian GNU/Linux	8	
	13	2017-11-04 02:11:27.000 UTC	nul	uproot-1.0.0.tar.gz	1.0.0	sdist	/packages/5c/0a/7ca1f587d460cb8fe70306a94308822b2cce5bf176cd4f087	9246950c73t/uproot-1	.0.0.tar.gz	Rasphian GNU/Linux	8	
		2017-11-04 02:11:29.000 UTC	null	uproot-1.2.0.tar.gz	1.2.0	sdist	/packages/c0/e1/c249b359c0dfce204968f6fefff84813199b77b66a43b36727	c4d2ed60f4/uproot-1.	2.0.tar.gz	Raspbian GNU/Linux	8	
	14											
	14	2017-11-04 02:11:39.000 UTC	nul	uproot-1.3.0.tar.gz	1.3.0	sdist	/packages/7e/6d/070aff4821b78a8bf7d133922ad93540c82a01924473e1d	77149d6fb9be/uproot-	1.3.0.tar.gz	Raspbian GNU/Linux	8	
				uproot-1.3.0.tar.gz uproot-1.6.1.tar.gz	1.3.0	sdist sdist	/packages/7e/6d/t070aff4821b78a8bf7d133922ad93540c82a01924473e1d /packages/d7/39/8eadf6a705cd6b6b778fc2b067d920b0776bb1b3b11e335f			Raspbian GNU/Linux Raspbian GNU/Linux	8	

Einst < Prev Rows 1 - 17 of 37 Next > Last

	Google/Big Data	HEP	what I'm developing
Source data format	Parquet, ORC, Avro, BSON,	ROOT	uproot: array-oriented ROOT reader
Query language	SQL	Python or $C++$	oamap: columnar objects
Distributed storage	GFS/HDFS	<i>similar</i> (Ceph?)	starting now
Distributed processing	Dremel/Drill	<i>similar</i> (Dask? Zookeeper?)	future
User interface	web dashboard, Google Sheets, REST queries	TDataFrame, PyROOT, Jupyter, SWAN, Spark	Histogrammar: functional histogramming, Femtocode (future)

uproot: pure-Python ROOT reader that directly copies columnar ROOT data into Numpy arrays.

oamap: object-array mapping (analogy to ORM) translating processes defined on virtual objects into operations on columnar arrays.

Standardized way of wrapping low-level (fast) arrays in high-level (convenient) Python.

Most scientific Python libraries are compiled code with Python interfaces, and Numpy is the standard way to move or share data between them.

uproot provides this kind of access to ROOT.

>>> import uproot

>>> t = uproot.open("tests/samples/Zmumu.root")["events"]
>>> t.keys()

```
['Type', 'Run', 'Event', 'E1', 'px1', 'py1', 'pz1', 'pt1',
'eta1', 'phi1', 'Q1', 'E2', 'px2', 'py2', 'pz2', 'pt2',
'eta2', 'phi2', 'Q2', 'M']
```

```
>>> t["M"].array()
```

```
array([ 82.46269156, 83.62620401, 83.30846467, ..., 95.96547966, 96.49594381, 96.65672765])
```

>>> t.arrays(["px1", "py1", "pz1"])

```
{'py1': array([ 17.433243, -16.5703623, -16.5703623, ..., 1.1994057,
...
```

```
>>> t.arrays() # all of them!
```

Doing meaningful calculations with Numpy arrays


```
>>> import uproot, numpy
>>> t = uproot.open("tests/samples/Zmumu.root")["events"]
>>> px, py, pz = t.arrays(["px1", "py1", "pz1"], outputtype=tuple)
>>> # compute pt for all events in the first pass
>>> pt = numpy.sqrt(px * *2 + py * *2)
>>> # compute eta for all events
>>> eta = numpy.arctanh(pz / numpy.sqrt(px**2 + py**2 + pz**2))
>>> # compute phi for all events
>>> phi = numpy.arctan2(py, px)
>>> print(pt, eta, phi)
[ 44.7322 38.8311 38.8311 ..., 32.3997 32.3997 32.5076 ],
[-1.21769 -1.05139 -1.05139 ..., -1.57044 -1.57044 -1.57078 ],
[2.74126 -0.44087 -0.44087 ..., 0.03702 0.03702 0.036964]
```

The loop over events is in (fast) compiled code, not (slow) Python for loops. When we iterate over big datasets, we iterate in batches:

uproot.iterate("files*.root", "events", ["px1"], entrystep=1000)

\$ pip install pandas --user

>>> df = t.pandas.df() # all the same arguments as t.arrays()
>>> df

E1E2 Event. М 01 02 Run 82.201866 60.621875 10507008 82.462692 1 -1 0 148031 1 62.344929 82.201866 10507008 83.626204 -1 1 148031 2 62.344929 81.582778 10507008 83.308465 -1 1 148031 3 60.621875 81.582778 10507008 82.149373 -1 1 148031 . . . 2302 1,199406 - 26,398400-74.532431 - 153.847604GT 2303 1.201350 - 26.398400-74.808372 -153.847604 GG

[2304 rows x 20 columns]

Pandas is a Swiss army knife for *in-memory, tabular* data analysis. Linked to plotting tools, exploratory data analysis, and machine learning. The popular *Python for Data Analysis* book is basically a Pandas tutorial.

Data with non-uniform width (not scalar numbers)


```
[]])
```

Data with non-uniform width (not scalar numbers)


```
>>> t = uproot.open("tests/samples/mc10events.root")["Events"]
>>> a = t.array("Muon.pt")  # such as std::vector<numbers>
>>> a
                                # variable length for each event
jaggedarrav([[ 28.07074928],
              [],
              [ 5.52336693 5.4780116 4.13222885],
              . . .
              [],
              [ 6.85138178],
              []])
>>> for event in a:
        for muon in event:
. . .
            # conceptually, an array of different-length arrays
. . .
. . .
```

Data with non-uniform width (not scalar numbers)


```
>>> t = uproot.open("tests/samples/mc10events.root")["Events"]
>>> a = t.array("Muon.pt")  # such as std::vector<numbers>
>>> a
                             # variable length for each event
jaggedarrav([[ 28.07074928],
             [],
             [ 5.52336693 5.4780116 4.13222885],
             . . .
             [],
             [ 6.85138178],
             []])
>>> a.contents  # but efficiently stored as a contiguous block
array([ 28.07074928, 5.52336693, 5.47801161, 4.13222885, ...
        5.06344414, 6.85138178], dtype=float32)
>>> a.stops # with event boundaries in a separate array
array([1, 1, 4, 7, 7, 8, 13, 13, 14, 14])
```

Not just TTrees; reads TStreamers and interprets several types

>>> import uproot

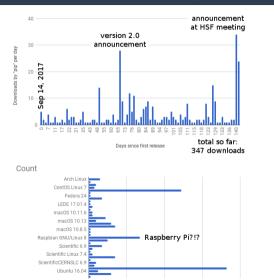
- >>> f = uproot.open("mixed-data.root")
- >>> f.allclasses() # list object names and classes (recursively)

{'gaussian;1': <class 'uproot.rootio.TH1F'>, 'events;1': <class 'uproot.rootio.TTree>}

>>> f["gaussian"].show()

		0 241	1
		+	+
[-inf, -3)	0		1
[-3, -2.4)	68	*	1
[-2.4, -1.8)	285	*****	1
[-1.8, -1.2)	755	*****	1
[-1.2, -0.6)	1580	*****	1
[-0.6, 0)	2296	************	1
[0, 0.6)	2286	****************	1
[0.6, 1.2)	1570	*****	1
[1.2, 1.8)	795	*****	1
[1.8, 2.4)	289	*****	1
[2.4, 3)	76	* *	1
[3, inf]	0		1
		+	+

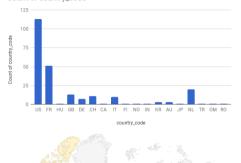
- Explicit caching (user-provided dict or dict-like object)
- Explicit parallel-processing (user-provided ThreadPoolExecutor)
- Optional non-blocking calls (useful when parallel-processing)
- ► Lazy arrays (load on demand, aware of TBasket structure)
- Numba integration: operations on Numpy arrays, JaggedArrays and TH1 can be compiled (more later)
- Functional chains (like TDataFrame)


pip install uproot --user

https://github.com/scikit-hep/uproot

http://uproot.readthedocs.io

uproot download statistics (pip logs are in Google BigQuery)



40

Count

80

Count of country_code

14 / 20

Object-Array Mapping: generalizing JaggedArrays

JaggedArrays are only one data structure: list of lists of numbers.

- Implementation as an array of numbers with array of boundaries is much more efficient than thousands of tiny arrays randomly scattered in memory.
- Sublists are "views" created on demand. (Not created at all in compiled code!)

Object-Array Mapping: generalizing JaggedArrays

JaggedArrays are only one data structure: list of lists of numbers.

- Implementation as an array of numbers with array of boundaries is much more efficient than thousands of tiny arrays randomly scattered in memory.
- Sublists are "views" created on demand. (Not created at all in compiled code!)

Generalize to a complete typesystem:

primitives: booleans, numbers, characters— anything fixed-width;

lists: arbitrary length sequences of any single type;

unions: logical-or type (e.g. a Particle is an Electron or a Photon);

records: logical-and type: "struct" object that contains named, typed fields;

tuples: like a record, but typed fields are indexed, not named;

pointers: redirect to another collection to make trees, graphs, enumerations; extensions: runtime interpretations of the above (e.g. list of chars as a "string").

NASA Exoplanets example on website

>>> import oamap.source.parquet

>>> stars = oamap.source.parquet.open("planets*.parquet")
>>> stars

```
>>> stars[0].ra, stars[0].dec
```

(293.12738, 42.320103)

```
>>> stars[258].planets
```

[<Planet at index 324>, <Planet at index 325>, <Planet at index 326>, <Planet at index 327>, <Planet at index 328>]

```
>>> [x.name for x in stars[258].planets]
```

['HD 40307 b', 'HD 40307 c', 'HD 40307 d', 'HD 40307 f', 'HD 40307 g']

Explore, scan with compiled code, then explore some more...


```
>>> import numba
                              # compiles array-based Python code
>>> import oamap.compiler # loads object-array compiler extensions
>>> @numba.njit
                    # decorator for compiling a function
>>> def orbital_period_ratio(stars):
      out = []
. . .
... for star in stars:
          best ratio = None
. . .
          for one in star.planets:
. . .
             for two in star.planets:
. . .
                ratio = one.orbital period.val / two.orbital period.val
. . .
                if best_ratio is None or ratio > best_ratio:
. . .
                   best ratio = ratio
. . .
          if best ratio is not None and best ratio > 200:
. . .
             out.append(star)
. . .
       return out
. . .
>>> extremes = orbital period ratio(stars)
>>> extremes
[<Star at index 284>, <Star at index 466>, <Star at index 469>, ...
17/20
```


- TBranch data efficiently lifted from ROOT into arrays, efficiently scanned with oamap/numba-compiled functions.
- Columns of data are *never* turned into objects.
 - ▶ No need for schema evolution (no container classes).
 - ROOT-style selective and contiguous branch reading at all stages of the calculation: disk → memory and memory → CPU.
 - Alternate between object-oriented operations and vectorized (or GPU) operations.
 - Manipulate structure of dataset without copying data.
 - Different dataset versions can share the majority of their columns.
- These techniques are common for SQL in databases, but new to full programming environments like Python objects.
- ▶ There was nothing special about Python; this could be done for C++ as well.

pip install oamap --user

https://github.com/diana-hep/oamap

(The demo examples use a Parquet file of NASA Exoplanets because I want it to be accessible to developers outside of HEP, to attract outside help.)

	Google/Big Data	HEP	what I'm developing		
Source data format	Parquet, ORC, Avro, BSON,	ROOT	uproot: array-oriented ROOT reader		
Query language	SQL	Python or $C++$	oamap: columnar objects		
Distributed storage	GFS/HDFS	<i>similar</i> (Ceph?)	starting now		
Distributed processing	Dremel/Drill	<i>similar</i> (Dask? Zookeeper?)	future		
User interface	web dashboard, Google Sheets, REST queries	TDataFrame, PyROOT, Jupyter, SWAN, Spark	Histogrammar: functional histogramming, Femtocode (future)		