
Data Analysis R&D

Jim Pivarski

Princeton University – DIANA-HEP

February 5, 2018

1 / 20

Tools for data analysis

Eventual goal

Query-based analysis: let physicists do their analysis by querying a central dataset
instead of downloading and managing private skims. Remove an expensive middleman!

Existence proof

1. I’ve worked with such systems at several large companies as a statistical
consultant, regularly querying terabytes in seconds.

2. Just to prepare this talk, I ran a query on Google BigQuery (2 TB in 30 sec).
Analysis-as-a-service is common in industry: this one is publicly accessible.

2 / 20

Google BigQuery

3 / 20

These systems are not suited for HEP data, but they could be

Google/Big Data HEP what I’m developing

Source data format Parquet, ORC,
Avro, BSON, . . .

ROOT uproot: array-oriented
ROOT reader

Query language SQL Python or C++ oamap: columnar objects

Distributed storage GFS/HDFS similar (Ceph?) starting now

Distributed processing Dremel/Drill similar (Dask?
Zookeeper?)

future

User interface web dashboard,
Google Sheets,
REST queries

TDataFrame,
PyROOT, Jupyter,
SWAN, Spark

Histogrammar:
functional histogramming,
Femtocode (future). . .

4 / 20

This talk: pieces that can be used on their own, right now

uproot: pure-Python ROOT reader that directly copies columnar
ROOT data into Numpy arrays.

oamap: object-array mapping (analogy to ORM) translating
processes defined on virtual objects into operations on
columnar arrays.

5 / 20

Numpy is the reason an ML ecosystem developed in Python

Standardized way of wrapping low-level (fast) arrays in high-level
(convenient) Python.

Most scientific Python libraries are compiled code with Python
interfaces, and Numpy is the standard way to move or share data
between them.

uproot provides this kind of access to ROOT.

6 / 20

Load one attribute for all events at a time

>>> import uproot
>>> t = uproot.open("tests/samples/Zmumu.root")["events"]
>>> t.keys()

[’Type’, ’Run’, ’Event’, ’E1’, ’px1’, ’py1’, ’pz1’, ’pt1’,
’eta1’, ’phi1’, ’Q1’, ’E2’, ’px2’, ’py2’, ’pz2’, ’pt2’,
’eta2’, ’phi2’, ’Q2’, ’M’]

>>> t["M"].array()

array([82.46269156, 83.62620401, 83.30846467, ..., 95.96547966,
96.49594381, 96.65672765])

>>> t.arrays(["px1", "py1", "pz1"])

{’py1’: array([17.433243, -16.5703623, -16.5703623, ..., 1.1994057,
...

>>> t.arrays() # all of them!

...
7 / 20

Doing meaningful calculations with Numpy arrays

>>> import uproot, numpy
>>> t = uproot.open("tests/samples/Zmumu.root")["events"]
>>> px, py, pz = t.arrays(["px1", "py1", "pz1"], outputtype=tuple)
>>> # compute pt for all events in the first pass
>>> pt = numpy.sqrt(px**2 + py**2)
>>> # compute eta for all events
>>> eta = numpy.arctanh(pz / numpy.sqrt(px**2 + py**2 + pz**2))
>>> # compute phi for all events
>>> phi = numpy.arctan2(py, px)
>>> print(pt, eta, phi)

[44.7322 38.8311 38.8311 ..., 32.3997 32.3997 32.5076],
[-1.21769 -1.05139 -1.05139 ..., -1.57044 -1.57044 -1.57078],
[2.74126 -0.44087 -0.44087 ..., 0.03702 0.03702 0.036964]

The loop over events is in (fast) compiled code, not (slow) Python for loops. When we
iterate over big datasets, we iterate in batches:

uproot.iterate("files*.root", "events", ["px1"], entrystep=1000)
8 / 20

Connector to an external package: Pandas

$ pip install pandas --user

>>> df = t.pandas.df() # all the same arguments as t.arrays()
>>> df

E1 E2 Event M Q1 Q2 Run \
0 82.201866 60.621875 10507008 82.462692 1 -1 148031
1 62.344929 82.201866 10507008 83.626204 -1 1 148031
2 62.344929 81.582778 10507008 83.308465 -1 1 148031
3 60.621875 81.582778 10507008 82.149373 -1 1 148031
...
2302 1.199406 -26.398400 -74.532431 -153.847604 GT
2303 1.201350 -26.398400 -74.808372 -153.847604 GG

[2304 rows x 20 columns]

Pandas is a Swiss army knife for in-memory, tabular data analysis. Linked to plotting
tools, exploratory data analysis, and machine learning. The popular Python for Data
Analysis book is basically a Pandas tutorial.

9 / 20

Data with non-uniform width (not scalar numbers)

>>> t = uproot.open("tests/samples/mc10events.root")["Events"]
>>> a = t.array("Muon.pt") # such as std::vector<numbers>
>>> a # variable length for each event

jaggedarray([[28.07074928],
[],
[5.52336693 5.4780116 4.13222885],
...
[],
[6.85138178],
[]])

>>> a.contents # but efficiently stored as a contiguous block

array([28.07074928, 5.52336693, 5.47801161, 4.13222885, ...
5.06344414, 6.85138178], dtype=float32)

>>> a.stops # with event boundaries in a separate array

array([1, 1, 4, 7, 7, 8, 13, 13, 14, 14])

10 / 20

Data with non-uniform width (not scalar numbers)

>>> t = uproot.open("tests/samples/mc10events.root")["Events"]
>>> a = t.array("Muon.pt") # such as std::vector<numbers>
>>> a # variable length for each event

jaggedarray([[28.07074928],
[],
[5.52336693 5.4780116 4.13222885],
...
[],
[6.85138178],
[]])

>>> for event in a:
... for muon in event:
... # conceptually, an array of different-length arrays
...

10 / 20

Data with non-uniform width (not scalar numbers)

>>> t = uproot.open("tests/samples/mc10events.root")["Events"]
>>> a = t.array("Muon.pt") # such as std::vector<numbers>
>>> a # variable length for each event

jaggedarray([[28.07074928],
[],
[5.52336693 5.4780116 4.13222885],
...
[],
[6.85138178],
[]])

>>> a.contents # but efficiently stored as a contiguous block

array([28.07074928, 5.52336693, 5.47801161, 4.13222885, ...
5.06344414, 6.85138178], dtype=float32)

>>> a.stops # with event boundaries in a separate array

array([1, 1, 4, 7, 7, 8, 13, 13, 14, 14])
10 / 20

Not just TTrees; reads TStreamers and interprets several types

>>> import uproot
>>> f = uproot.open("mixed-data.root")
>>> f.allclasses() # list object names and classes (recursively)

{’gaussian;1’: <class ’uproot.rootio.TH1F’>, ’events;1’: <class ’uproot.rootio.TTree>}

>>> f["gaussian"].show()

0 2411
+--+

[-inf, -3) 0 | |
[-3, -2.4) 68 |* |
[-2.4, -1.8) 285 |****** |
[-1.8, -1.2) 755 |**************** |
[-1.2, -0.6) 1580 |********************************** |
[-0.6, 0) 2296 |** |
[0, 0.6) 2286 |*** |
[0.6, 1.2) 1570 |********************************* |
[1.2, 1.8) 795 |**************** |
[1.8, 2.4) 289 |****** |
[2.4, 3) 76 |** |
[3, inf] 0 | |

+--+ 11 / 20

Other features

I Explicit caching (user-provided dict or dict-like object)

I Explicit parallel-processing (user-provided ThreadPoolExecutor)

I Optional non-blocking calls (useful when parallel-processing)

I Lazy arrays (load on demand, aware of TBasket structure)

I Numba integration: operations on Numpy arrays, JaggedArrays
and TH1 can be compiled (more later)

I Functional chains (like TDataFrame)

12 / 20

pip install uproot --user

https://github.com/scikit-hep/uproot

http://uproot.readthedocs.io

13 / 20

https://github.com/scikit-hep/uproot
http://uproot.readthedocs.io

uproot download statistics (pip logs are in Google BigQuery)

14 / 20

Object-Array Mapping: generalizing JaggedArrays

JaggedArrays are only one data structure: list of lists of numbers.

I Implementation as an array of numbers with array of boundaries is much more
efficient than thousands of tiny arrays randomly scattered in memory.

I Sublists are “views” created on demand. (Not created at all in compiled code!)

Generalize to a complete typesystem:

primitives: booleans, numbers, characters— anything fixed-width;

lists: arbitrary length sequences of any single type;

unions: logical-or type (e.g. a Particle is an Electron or a Photon);

records: logical-and type: “struct” object that contains named, typed fields;

tuples: like a record, but typed fields are indexed, not named;

pointers: redirect to another collection to make trees, graphs, enumerations;

extensions: runtime interpretations of the above (e.g. list of chars as a “string”).

15 / 20

Object-Array Mapping: generalizing JaggedArrays

JaggedArrays are only one data structure: list of lists of numbers.

I Implementation as an array of numbers with array of boundaries is much more
efficient than thousands of tiny arrays randomly scattered in memory.

I Sublists are “views” created on demand. (Not created at all in compiled code!)

Generalize to a complete typesystem:

primitives: booleans, numbers, characters— anything fixed-width;

lists: arbitrary length sequences of any single type;

unions: logical-or type (e.g. a Particle is an Electron or a Photon);

records: logical-and type: “struct” object that contains named, typed fields;

tuples: like a record, but typed fields are indexed, not named;

pointers: redirect to another collection to make trees, graphs, enumerations;

extensions: runtime interpretations of the above (e.g. list of chars as a “string”).

15 / 20

NASA Exoplanets example on website

>>> import oamap.source.parquet
>>> stars = oamap.source.parquet.open("planets*.parquet")
>>> stars

[<Star at index 0>, <Star at index 1>, <Star at index 2>,
<Star at index 3>, <Star at index 4>, ...]

>>> stars[0].ra, stars[0].dec

(293.12738, 42.320103)

>>> stars[258].planets

[<Planet at index 324>, <Planet at index 325>, <Planet at index 326>,
<Planet at index 327>, <Planet at index 328>]

>>> [x.name for x in stars[258].planets]

[’HD 40307 b’, ’HD 40307 c’, ’HD 40307 d’, ’HD 40307 f’, ’HD 40307 g’]

16 / 20

Explore, scan with compiled code, then explore some more. . .

>>> import numba # compiles array-based Python code
>>> import oamap.compiler # loads object-array compiler extensions
>>> @numba.njit # decorator for compiling a function
>>> def orbital_period_ratio(stars):
... out = []
... for star in stars:
... best_ratio = None
... for one in star.planets:
... for two in star.planets:
... ratio = one.orbital_period.val / two.orbital_period.val
... if best_ratio is None or ratio > best_ratio:
... best_ratio = ratio
... if best_ratio is not None and best_ratio > 200:
... out.append(star)
... return out
>>> extremes = orbital_period_ratio(stars)
>>> extremes
[<Star at index 284>, <Star at index 466>, <Star at index 469>, ...

17 / 20

oamap is an infrastructure component

I TBranch data efficiently lifted from ROOT into arrays, efficiently scanned with
oamap/numba-compiled functions.

I Columns of data are never turned into objects.
I No need for schema evolution (no container classes).
I ROOT-style selective and contiguous branch reading at all stages of the calculation:

disk → memory and memory → CPU.
I Alternate between object-oriented operations and vectorized (or GPU) operations.
I Manipulate structure of dataset without copying data.
I Different dataset versions can share the majority of their columns.

I These techniques are common for SQL in databases, but new to full programming
environments like Python objects.

I There was nothing special about Python; this could be done for C++ as well.

18 / 20

pip install oamap --user

https://github.com/diana-hep/oamap

(The demo examples use a Parquet file of NASA Exoplanets because I want it to be
accessible to developers outside of HEP, to attract outside help.)

19 / 20

https://github.com/diana-hep/oamap

Final slide: reminder of how these fit into a larger project

Google/Big Data HEP what I’m developing

Source data format Parquet, ORC,
Avro, BSON, . . .

ROOT uproot: array-oriented
ROOT reader

Query language SQL Python or C++ oamap: columnar objects

Distributed storage GFS/HDFS similar (Ceph?) starting now

Distributed processing Dremel/Drill similar (Dask?
Zookeeper?)

future

User interface web dashboard,
Google Sheets,
REST queries

TDataFrame,
PyROOT, Jupyter,
SWAN, Spark

Histogrammar:
functional histogramming,
Femtocode (future). . .

20 / 20

