Calorimeter Upgrade: Analog Electronics

D. Gascon, J. Mauricio, <u>E. Picatoste</u>

ICCUB//SiUB, University of Barcelona

I. Calorimeter upgrade: analog electronics

- II. System design
- III. Digital building blocks
- IV. Tests
- V. Production

I. Current Analog Signal Processing

I. Analog Electronics Upgrade Motivation

Calo FE PRR

- I. Calorimeter upgrade: analog electronics
- II. System design
- III. Digital building blocks
- IV. Tests
- V. Production

Very difficult to integrate HQ analog delay lines

ICC-UB meeting

II. ICECAL ASIC

- Analog channel:
 - Very difficult to integrate HQ analog delay lines
 - 2 switched alternated paths
 - \rightarrow no dead time between consecutive events
 - Switching noise \rightarrow fully differential ASAP
 - Input impedance control by current feedback
 - \rightarrow Low noise performance

- Tunable parameters
- 4 DLL for synchronization
- 2 versions with gain:
 - 4.5 fC/LSB
 - 9.0 fC/LSB

13 February 2018

- I. Calorimeter upgrade: analog electronics
- II. System design
- **III. Digital building blocks**
- IV. Tests
- V. Production

III. Digital building blocks: DLL

- Clock management is internally done by the ICECAL Chip:
 - Three clock phases are generated from an input reference (REF_CLK):
 - Track & Hold clock phase (Φ_{TH}). $F_{CLK} = 20$ MHz.
 - Integrator clock phase ($\Phi_{INT} = \Phi_{TH} + \Delta \Phi_{INT}$). $F_{CLK} = 20$ MHz.
 - ADC clock phase (Φ_{ADC}). F_{CLK} = 40 MHz.

III. Digital building blocks: slow and fast controls

- Access to internal registers to configure the chip:
 - Analog channel parameters
 - DLL
 - SPI Slave

- Analog sub-channel reset circuit:
 - FPGA needs to know the analog sub-channel source of the ADC reading Gain & Offset compensations.
 - The first sub-channel is always the same for each configuration

- I. Calorimeter upgrade: analog electronics
- II. System design
- III. Digital building blocks
- **IV. Tests**
- V. Production

II. ICECAL ASIC: tests results

Tests at lab and test beams:

Institute of Cosmos Sciences

13 February 2018

Calo FE PRR

II. ICECAL ASIC: radiation hardness tests

At CRC (UCL) in Louvain-la-Neuve (Belgium)

TID tests:

- Use beam of 61 MeV protons
- Dose up to 55 krad on 4 chips
- Results:
 - No SEU or SEL was detected
 - No relevant variation on the chips characteristics

SEE tests:

- Irradiate with heavy ions: 58Ni+18
 - LET = 20.4 MeV/mg/cm2
- Two chips were irradiated:
 - No SEU detected
- Use refresh signal
- Equivalent expected limits for all channels in detector lifetime:
 - 1.3 SEU
 - 0.9 SEL

- I. Calorimeter upgrade: analog electronics
- II. System design
- III. Digital building blocks
- IV. Tests
- V. Production

IV. Production

Robotic system

- Motorized horizontal gantry system to move the chips from tray to the test PCB and to final tray.
- Motorized stage in the vertical direction.
- Pneumatic suction.
- Pressure sensor.

<text>

Updated mezzanine

13 February 2018

ICC-UB meeting

V. Status

- Production
 - Standard version (v3.1): 3050 pieces
 - Reduced gain (v3.2): 3050 pieces
- Production test
 - Mezzanine: ready
 - SW:
 - Test defined: rejection limits are being prepared
 - Robotic setup ready in ~2 weeks
 - Estimated total test time: 2-3 months

Backup

II. System design: Analog Electronics Specifications

- PMT current has to be reduced by factor ~ 5 to increase their lifetime:
 - FE electronics gain has to be increased correspondingly
 - FE input equiv. noise should still be ~ 1 LSB
- New ASIC:
 - Increased gain
 - Reduced noise
 - Integration / shaping
- New front end board is required:
 - Low noise analog electronics
 - Data transmission @ 40MHz

Energy range	0-10 GeV/c (ECAL) Transverse energy	
Calibration	4.5 fC / 2.5 MeV / LSB	
Dynamic Range	4096-256 = 3840 : 12 bit	
Noise	<≈ 1 LSB or ENC < 4 fC	
Termination	50 ± 5 Ω	
Shaping	25 ns (99% of the charge)	
Baseline shift prevention	Dynamic pedestal subtraction (CDS) Pedestal is the smallest of 2 prev. Samples	
Max. Peak current	4 - 5 mA (clipped)	
Spill-over residue level	±1%	
Linearity	< 1%	
Crosstalk	< 0.5%	
Timing	Individual (per channel)	

III. ICECAL pinout

III. SPI refresh

• 16-bit TMR registers:

- Each bit is stored in 3 flip-flops.
- Majority is computed.
- SEUs are automatically corrected.
 - <u>Problem</u>: correction is done as long as SPI clock is active.
 - <u>Solution</u>: SPI refresh signal.

• SPI refresh signal:

- An auxiliary clock is provided.
- Only enabled when SPI slave is idle.
- Is optional: can be disabled by software.

13 February 2018

III. Fast control: BXID reset

Analog sub-channel reset circuit:

- An ASIC channel consists in two sub-channels.
- FPGA needs to know the analog sub-channel source of the ADC reading:
 - Gain & Offset compensations.
- How it works:
 - FPGA generates 1-cycle width synchronous reset pulse.
 - ICECAL resynchronizes this reset with its input clock.
 - > Metastable phases (FPGA \rightarrow ASIC) are discarded.
 - Debug signals:
 - + External pad: 32-BXID_RST_SYN
 - + Slow control bit (Detected)
 - Integrator and T&H clocks levels are preset (clock phases remain unchanged).
 - The first sub-channel is always the same for each configuration

III. Internal delay

Proposed circuits between ICECAL and GBT-SCA

 It is recommended to use a voltage divider to read the DLL V_{CONTROL} and adapt the voltage range to the ADC input.

DLL V_{COARSE} input generation

- The input VCOARSE voltage has to be controlled by a DAC.
 - Its expected value is 1.2V
 - Range: from 0.5V to 2V.

ICC-UB meeting

III. Time alignment

Synchronization method:

- Φ_{ICECAL_CLK_IN}: look for the most stable phase for which the sub-channel reset is performed (fixed for each PCB).
- 2. Φ_{I_TH} : delay between the integration time and the Track-and-Hold clocks (internal delays of the chip, optimal = 1ns).
- Φ_{TH}: detector channel optimal integration time (particle time arrival, PM HV, signal cable length). Look for the maximum signal and minimum spill over.
- 4. Φ_{ADC} : time at which the ADC performs the conversion (fixed for each PCB).
- 5. Φ_{ADC_FPGA} : the ADC 12 bits of data have to be captured by the FPGA in parallel at the right phase or there will be data corruption. Use rising or falling edge of the FPGA clock (fixed for each PCB).

III. Calorimeter Upgrade: ICECALv3

13 February 2018

ICC-UB meeting

Institute of Cosmos Sciences

III. Calorimeter Upgrade: ICECALv3

• Tests at lab:

13 February 2018

30

• Check noise in different conditions:

	Noise (LSB)	PS noise (LSB)	
Laboratory	1.4	1.7	
Lab + cable	1.6	1.8	
Test beam	12	2.7	r
Detector	< 7.1	< 2.9	FEB prototype Provisional GND

- Spec: ~1 ADC count
- The effects of Cockcroft-Walton HV sources and cables increase noise
- Upgraded detector expected pile-up ~5 LSB
 - Effect of electronics noise adds up to 5.8 LSB (vs. 5.1 LSB specified)

II. ICECAL ASIC: tests beams

- Beam line: T4-H8 at CERN
 Prevessin
- Beam: e⁻ with energy ranging from 20 to 120 GeV
- Elements used:
 - 4x(ECAL module+PMT+12m cable)
 - FEB prototype
 - Lecroy integrator
 - Time-to-Digital Converter (TDC)
 - ICECALv3 ASIC
- Main tests:
 - Plateau and spill-over
 - Linearity
 - Noise

II. ICECAL ASIC: radiation hardness tests

At CRC (UCL) in Louvain-la-Neuve (Belgium)

TID tests:

- Use beam of 61 MeV protons
- Different irradiation steps. Dose:
 - 55 krad over 3 chips
 - 40 krad over 1 chip
- Results:
 - During irradiation no SEU or SEL was detected
 - No relevant variation on the chips characteristics was observed

SEE tests:

- Irradiate with heavy ions: 58Ni+18
 - LET = 20.4 MeV/mg/cm2
- Two chips were irradiated:
 - No SEU detected after a fluence of 9,5-107 part/cm2
- 10 kHz refresh signal (SPIREFRESH)
- Equivalent expected limits for all channels in detector lifetime:
 - 1.3 SEU
 - 0.9 SEL

13 February 2018

Calo FE PRR

33

LHCb Upgrade Electronics ICECALv3. A Full Custom design

3.0 mm

EXCELENCIA MARÍA DE MAEZTU

Institute of Cosmos Sciences

3.5 mm

Backup: ICECALv3 architecture

Dynamic range and version decision (I)

	v3.1	v3.2
Sensitility (fC/LSB)	4.54	9.05
Cint	14	8
Pedestal	311	311
Dynamic range (LSB)	3784	3784
1 LSB (MeV)	2.5	5
Dynamic range (GeV)	9.5	19
Noise (LSB)	1.21	1.06
Noise PS (LSB)	1.66	1.26
Noise (MeV)	3	5.3
Noise PS (MeV)	4.2	6.3
Equivalent noise from detector (LSB)	2.1 to 2.4	2.1 to 2.4
Noise PS+detector noise (LSB)	2.7 to 2.9	2.4 to 2.7
Noise PS+detector noise (MeV)	6.5 to 7.2	8.0 to 8.6

- Which ASIC version?
 - ICECALv3.1.
 - ✓ Lower noise
 - ICECALv3.2
 - $\sqrt{}$ Increased dynamic range
 - Mixed solution? For example:
 - Inner FE with ICECALv3.2
 - Outer FE with ICECALv3.1

Production quality control

Robotic system

- Motorized horizontal gantry system to move the chips from tray to the test PCB and to final tray.
- Motorized stage in the vertical direction.
- Pneumatic suction.
- Pressure sensor.

Open FEB prototype top **Relays** (4 data channels) socket

Updated mezzanine

13 February 2018

ICC-UB meeting

Production quality control

ICC-UB meeting

Institute of Cosmos Sciences

Example: ASICs tested per robot run

Elements/Package	PACTA (Example)	ICECAL
Package	QFN32	QFN64
Size	6x6mm ²	9x9mm ²
Num Chips/Tray	490	260
Num Trays	14	12
Num Chips/Robot	6860	3120
Num Chips per test	4	1
Robot Movement + photo per test	~176s	~44s
Test QC Time per test	~65s	~300s
Test Robot+QC iteration	~240s	~344s
Complete Run Test	114h → ~5 days	298h → ~12 days
Chips Tested per day	~1440 chips/day	~252 chips/day

ICC-UB meeting