Production Readiness Review

Introduction

Electronics PRR

The LHCb calorimeter upgrade group

F. Machefert Tuesday 13th February, 2018

- The LHCb calorimeter system is based on the SPD/PS, ECAL and HCAL
- **Requirements** :
 - Energy/position measurements
 - Particle id for γ , electrons, hadrons
 - Present L0 trigger input
 - almost no spill-over

same

same

crates

New design of the Front-end electronics

- The calorimeter data will be sent @ 40 MHz to the upgraded-HLT / PCfarm
- Reduction of the PMT gain (factor 5) to reduce the integrated current
- The calorimeter will provide the necessary information to make the LLT decision
- The SPD/PS system is removed
 - Not so important after L0 disappears
 - Particle identification is affected
 - Easier calibration of the ECAL/better resolution
- The module will degrade because of radiations (affects the innermost cells)
 - ECAL baseline: replacement of the most affected modules planned for LS3
 - HCAL should survive longer
 - Performances will not be in specs up to 50fb⁻¹ (central region)
 - HCAL mainly used by L0
 - Not critical to lose the most internal cells after several tens of fb⁻¹
- Upgrade beam conditions have an impact on the performances
 - Pile-up \rightarrow look for new cluster shapes (reconstruction)
 - Particle id. for photon and electrons \rightarrow related to SPD/PS removal

LHCb

- Mainly concerns the electronics
 - New front-end electronics
 - 278 FEB
 - Prototypes of the analog and digital parts have been designed
 - FEB prototypes equipped with ICECAL have been tested intensively
 - Close to the final version (wait for latest consolidation proto.)
 - Integrate the final components (optical links, etc...)
 - 21 Control boards
 - Prototype has been tested and firmware developped
 - Final version reached
 - Electronics for the HV control, monitoring and calibration
 - Keep a large fraction of the present electronics
 - Modify 2 mezzanine boards
 - Design a GBT fanout (optical link \rightarrow elinks)
- Firmware development (microcode) for the TELL40
 - Event building and distribution of the events to the farm
- Dismantling of the SPD/PS/Lead
- Reconstruction software for the calorimeter objects
- Replacement of the innermost modules of the ECAL during the LS3

- Analog electronics
 - Spain
- Front-end boards for the ECAL/HCAL (digital part) Control board (3CU)
 - Readout (TELL40 calo specific code)
 - France
- HV/Calibration/Monitoring systems
 - Russia, Ukraine
- Installation/Dismantling/Commissioning
 - CERN, France, Russia, Spain
- Software for the reconstruction, identification
 - France, Russia, Spain

Analog electronics (I)

Basic requirements

Parameter	Requirement
Energy range	$0 \le E_{\rm T} \le 10 {\rm GeV} ({\rm ECAL})$
Calibration/Resolution	4 fC/2.5 MeV per ADC count
Dynamic range	4096-256 = 3840 cnts: 12 bits
Noise	$\lesssim 1 \text{ ADC cnt} (\text{ENC} < 4 \text{ fC})$
Termination	$50\pm5~\Omega$
Baseline shift prevention	Dynamic pedestal subtraction
Max. peak current	4-5 mA over 50 Ω
Spill-over residue level	$\leq 1\%$
Non-linearity	< 1%
Cross-talk	< 0.5%
Timing	Individual (per channel)

ICECAL ASIC v3

- 2 competitive developments : COTS design and ASIC (ICECAL)
 - Choice of the technology in 2014 \rightarrow ICECAL
- EDR and PRR of the ICECAL passed
- Several versions developed
 - Full integration of the time alignment of the channels in the chip
 - Integration of a pole-zero compensation
 - Reduction of the spill-over, better int. curve sampling
 - Analog gain is tunable (calo Et range flexibility)

Analog electronics (I)

Basic requirements

- Several ver
 - Full interior
 - Integration
 - o compensation Reduction spill-over, better int. curve sampling

alignment of the channels in the chip

Analog gain is mable (calo Et range flexibility)

Front-end board

- 2 prototypes of the Front-end board exist
- First prototype
 - Realistic acquisition implemented
 - Used in real conditions (Module) with ICECAL
 - Test beams (see below)
 - But no GBT and only 8 channels

FEB proto 1

Front-end board

2 prototypes of the Front-end board exist

First prototype

- Realistic acquisition implemented
 - Used in real conditions (Module) with ICECAL
 - Test beams (see below)
 - But no GBT and only 8 channels
- A second prototype has been produced
 - See presentation of Christophe
- The acquisition has been tested
 - Data stream
 - Solw control
- Wait the final version: a few corrections wrt the present one

FEB proto 2

- FEB EDR passed last year
 - Based on a realistic FEB version
- Most of the components used are already certified.
 - ~10 components of the FEB have been tested in June/July with ICECAL at Louvain-La-Neuve
- Firmware of the FPGA is partially available
 - Simulations of the response of the firmware to injected ADC values
 - Part of the present code can be used
- Custom test bench software available
 - Used for the test benches, test beams and irradiation tests
- We hope to be able to start the production very soon
 - Tests will be shared between France and Spain (2 test benches)

Analog and Front-end board tests

- The electronics has been tested during 2 test beams in 2014/2015
 - Electronics used
 - ICECAL (+ COTS design in 2014)
 - Front-end board prototype
 - Electrons from 20 to 120 GeV

Upgrade electronics

Control board

• The CTRL board performs a similar treatment as the VLDB board (CERN)

- Mainly Slow control signal distribution
- Add some functionalities
 - TFC fast commands
 - Clock distribution

A realistic prototype has been designed

- Final components used
- No modification is forseen before production

- The control board uses the same components as the FEB
 - CTRL board specific components have also been tested in June/July at Louvain-la-Neuve

HCB HV/Monitoring/Calibration for ECAL/HCAL

- System mostly independent from data taking
- The components are
 - HV-LED boards (standalone)
 - INTEG boards (readout of the HCAL PMT current, standalone)
 - LEDTSB (LED calibration) installed in the FE crates
- Very modular system
 - Motherboards are kept
 - LEDTSB equipped with 2 mezzanines that need to be replaced
 - 12 Slow control board \rightarrow move to the GBT-X/GBT-SCA

• 12 Ctrl board \rightarrow upgrade the FPGA generation (IGLOO2)

Need also to build a fanout board (12 copies including spares)

Hick HV/Monitoring/Calibration for ECAL/HCAL

Prototypes of

- Ctrl mezzanine
- GBT-SCA mezzanine

have been produced

- ELMD prototypes of the ELMD boards have been produced
 - Close to the CERN VLDB board
- Hardware has been tested intensively
- See presentation by Yuri/Anatoli

New Control mezzanine

GBT-SCA mezzanine

Hick Procurement of the components - Production of the compone

- Components bought for full production (all boards)
 - DC-DC converters
 - GBT-X
 - GBT-SCA
 - VT-T/R-x
 - ... all the other components (except for the ICECAL ASIC) are commercial chips and are easily available
- Optical links, counting room
 - Definition of the optical path (number, patch panel, etc...)
 - Almost completed
 - First estimation of the number of TELL40/SOL40 (counting room)
 - Almost ready

Dismanting - IELL40 minware -

Dismantling

- Manpower: essentially contributors to the installation of the SPD/PS
- Definition of the necessary tooling in progress
 - Try to recuperate the tools used for the installation
- Try to organize activities in parallel
- No specific issue related to this activity

• TELL40 microcode

- Data format specified
- No fancy data compression necessary for the calo (widebus mode)
- Work on pile-up (cluster reconstruction)

We do not expect significant issues or delays The development is well-advanced and the critical decisions have been taken

Should be ready for installation at the end of 2018

- Analog electronics
 - EDR, PRR passed
 - Production completed
- Front-end boards for the ECAL/HCAL (digital part)
 - FEB EDR passed
 - Production should start as soon as possible
- Control board (3CU) HV/Calibration/Monitoring systems
 - EDR passed
 - Schedule follows approximately FEB planning
- HV/Calib/monitoring
 - EDR passed
 - 2 mezzanines and a fanout GBT board to design
 - No specific problem
- Readout (TELL40 calo specific code)
 - Optical link path well defined (number of links, patch-panels, etc...)
 - Already an important activity on TELL40 microcode