

3CU (Calorimeter Crate Controller for the Upgrade) Production Readiness Review

Introduction

Short reminder (TFC system, Calorimeter crate)

General description

Main role - main part of the board - overview

Architecture

Global architecture - clock tree - GBT frame format - Slow Control - Delatching control - IGLOO2 FPGA - Power supplies and power tree - Rear connections - Fimware architecture

Conclusion

On behalf of the Orsay group

PRR 3CU board

Introduction : TFC system reminder

Introduction : Calorimeter crate reminder

- Front-end crate with same backplanes and power supply
 - 3U ⇒ power supply, clock distribution, …
 - 6U ⇒ links between boards inside the same crate.
 - New Front-end board with optical link DAQ and LLT.
 - New Control Board (3CU).
 - Remove TVB.
- Calorimeter crate controller board (3CU)
 Ensure signal distribution inside Front-end crate
 - Clock distribution from the 3CU to all frontend board inside the same crate through 3U backplane.
 - Slow control through 6U backplane
 - Fast command (BxId Reset, FE Reset, ...) through 3U backplane

- Crate Power supply
 - Reused Marathon equipment

PRR 3CU board

3CU : General description

- 3CU main role:
 - Receive the GBT frame through the optical link.
 - Extract the information needed by the FEBs (inside the same crate)
 - ♦ 40 Mhz Clock
 - Solution Time Fast Control (TFC) commands
 - Experiment Control System (ECS)
- Main part of the board:
 - A Versatile Transceiver (VTRx), a bi-directional module composed of both optical transmitter and receiver.
 - A GBTx chip that can be used to implement multipurpose high speed bidirectional optical link.
 - A GBT-SCA ASIC, part of GBT chip-set to distribute the Slow Control (SC) information on the board.
 - A Microsemi FPGA (IGLOO2), in charge of the processing on the 3CU.

General description: overview

SC

1 Bi-

link

3CU Board : Global architecture

PRR 3CU board

3CU Board : Clock tree

SN65LVDS104 (1:4 LVDS Clock Fanout Buffer) : already used on the CROC for the clk distribution

Olivier DUARTE - Upgrade calorimeter electronics PRR : 3CU_Board – February 13th, 2018

Clk[3], Clk[4] : IGLOO2 Clock input (one should be enough !)

Clk[2] : Spare (Old validation slot)

7

3CU Board : GBT frame

- GBT frame format:
 - 4 bits for the frame Header
 - 32 for the FEC (Forward Error Correction)
 - This leaves 84 bit for data transmission
 - 4 bit for Slow Control information Internal Control (IC) and External Control (EC) field
 - 🌭 80 bit for user Data (D) transmission
 - "D" and "EC" fields is not pre-assigned and can be used indistinctly for Data Acquisition (DAQ), Timing Trigger & Control (TTC) and Experiment Control (EC) application
- 3CU extract and process (if necessary) the TTC and EC to transmit them through backplane to the FEBs.

3CU Board : Slow Control (SC)

- GBT encodes SC packets in the counting room
- Transmit through optical fiber SC information interlaced with the rest of the traffic (DAQ, TTC, ...)
- Delivers the SCA packet unmodified to the GBT-SCA
- GBT-SCA provides various user-configurable interfaces capable to perform simultaneous operations
 - I2C (16 independent I2C master)
 - SPI (with 8 individual slave select lines)
 - GPIO (32 digital IO lines)
- 3CU board >
 - Transmit the SC to the 16 FEBs inside the same crate through the 6U backplane (translator SLVS – LVDS)
 - Integrate a GBT-SCA to distribute control and monitoring signals on the 3CU 1 Bidirectionnal

VTRx

TOSA

120b @ 40MSPS

- Each FEBs inside the crate are protected by delatchers (2A, Current-Limited switch) of type MAX 869
 - If Single Event Latchup (SEL) occurs the MAX869 switch OFF (during few ms) the FEB and ON again
 - The delatching is controlled by the 3CU one connection between each FEB and 3CU, 16 lines off the backplane)
- On the 3CU
 - Each delatching control line is connected to the IGLOO2 (status register)
 - Status register regularly checked by the system, and if it necessary the FEB may be reloaded by ECS.
- Reused the same system of the CROC board with the IGLOO2

3CU Board : IGLOO2 FPGA

- Flexible IOs structure
 - Mixed voltages VCCIO_BANK (1.2, 1.5, 1.8, 2.5, 3.3V)
 - Multistandard IOs

Overvie	w Product Table	Documentation Design Resources Orderin						g
roduct Fa	mily					$\downarrow\downarrow\downarrow$		
	Features	M2GL005	M2GL010	M2GL025	M2GL050	M2GL060	M2GL090	M2GL15
Logic/DSP	Maximum Logic Elements (4LUT + DFF)*	6,060	12,084	27,696	56,340	56520	86,316	146,124
	Math Blocks (18x18)	11	22	34	72	72	84	240
	PLLs and CCCs	2					8	
	SPI/HPDMA/PDMA	1 each						
	Fabric Interface Controllers (FICs)	1 2				2		
	Security	AES256, SHA256, RNG			AES256, \$, SHA256, RNG, ECC, PUF		
Memory	eNVM (K Bytes)	128	256			512		
	LSRAM 18K Blocks	10	21	31	69	69	109	236
	uSRAM1K Blocks	11	22	34	72	72	112	240
	e SRAM (K Bytes)	64			64			
	Total RAM (K bits)	703	912	1104	1826	1826	2586	5000
High Speed	DDR Controllers	1x18		2x36	1x18	1x18	2x36	
	SERDES Lanes	0	4		8	4	4	16
	PCIe End Points	0	1			2		4
User I/Os	MSIO (3.3V)	115	123	157	139	271	309	292
	MSIOD (2.5V)	28	40	40	62	40	40	106
	DDRIO (2.5V)	66	70	70	176	76	76	176
	Total User I/O	209	233	267	377	387	425	574
Grades	Commercial (C), Industrial (I), Military (M), Automotivo(T1/T2)*	C,I,T1,T2	C,I,M,T1,T2	C,I,M,T1,T2	C,I,M,T1,T2	C,I,M,T1,T2	C,I,M,T1,T2	C,I,M

Supported I/O Standards

SmartFusion2/IGLOO2 devices support the different I/O stant standards can be configured using Libero SoC. Refer to the L Notes:

```
Table 5-1 lists all the I/O standards supported for single-end 

f. For M2GL060-FG676 device, SERDES block is not available in bank 7.

Figure 4 • IGLO02 M2GL060TS/ M2GL060-FG676 I/O Bank Locations
```

I/O Standards	Single-ended	Differential	MSIO (Max 3.3 V)	MSIOD (Max 2.5 V)	DDRIO (Max 2.5 V)
LVTTL	Yes	-	Yes	-	-
PCI	Yes	-	Yes	-	-
LVPECL (input only)	-	Yes	Yes	-	-
LVDS33	-	Yes	Yes	-	-
LVCMOS33	Yes	-	Yes	-	-
LVCMOS25	Yes	-	Yes	Yes	Yes
LVCMOS18	Yes	-	Yes	Yes	Yes
LVCMOS15	Yes	-	Yes	Yes	Yes
LVCMOS12	Yes	-	Yes	Yes	Yes
SSTL2I	Yes	Yes	Yes	Yes	Yes (DDR1)
SSTL2II	Yes	Yes	Yes	-	Yes (DDR1)
SSTL18I	Yes	Yes	-	-	Yes (DDR2)
SSTL18II	Yes	Yes	-	-	Yes (DDR2)
SSTL15I (only for I/Os used by MDDR/FDDR)	Yes	Yes	-	-	Yes (DDR3)
SSTL15II (only for I/Os used by MDDR/FDDR)	Yes	Yes	-	-	Yes (DDR3)
HSTLI	Yes	Yes	-	-	Yes
HSTLII	Yes	Yes	-	-	Yes
LVDS	-	Yes	Yes	Yes	-
RSDS	-	Yes	Yes	Yes	-
Mini LVDS	-	Yes	Yes	Yes	-
BUSLVDS	-	Yes	Yes	Yes (input only)	-
MLVDS	-	Yes	Yes	Yes (input only)	-
SUBLVDS (output only)	-	Yes	Yes	Yes	-

Note: For I/O pin names and bank assignments for different device packages, refer to the SmartFusion2/IGLOO2 Pin Descriptions document.

* Total logic may vary based on utilization of DSP and memories in your design. Please see the IGLOO2 Fabric UG for details * Automotive grade is available only in VF256, VF400, FG484 and FG676 packages

Power supplies and power tree

- 3CU power supplies needed
 - ≻ 5V
 - Input DC-DC converter for 1V5 and 1V2
 - > 3∨3
 - Discret components,
 - ► 2V5
 - VTRx, FPGA IOs, ...
 - ▶ 1V5
 - GBTx, GBT_SCA, VTRX, ...
 - ▶ 1V2
 - FPGA Core
- Crate power supplies available:
 - > 7V, 5V, 3,3V, and 2,5V
 - 7V must be decrease at 6V
- Modification to the compatibility with the <u>LEDTSB design</u>
 - Move the 2.5V to 3.3V and use diodes to generate the 2.5V.

kitch

LHCb

3CU Board : rear connection with 3U and 6U Backplane

- 6U Backplane connections
 - Transmit SC to all the FEBs
 - Crate Id
 - Delatching control line
- 3U Backplane connections
 - Power supply distribution
 - Clock distribution
 - TFC command distribution

Firmware architecture (IGLOO 2)

PRR 3CU board

3CU Test Bench

- Two 3CU board prototype available
 - Optical link from MiniDAQ
 - External clock generator
 - USB interface
 - Power supply, oscilloscope , ...

Test status about clock and MiniDAQ

- About clock
 - The 3CU board works in master Clock
 - Without optical links and With GBTx configuration by dongle (I2C) from CERN
 - The 3CU board works with the Clock locked on the optical fiber With optical links (from MiniDAQ) and with GBTx configuration by dongle (I2C) from CERN
- The test of the Clock distribution through backplane to FEB is to do.

- About MiniDAQ (Optical link between MiniDAQ and 3CU board only)
 - The MiniDaq (GBT Client) read the fourth Ctrl register inside the GBT_SCA.

in progress

Test status about TTC command

- About MiniDAQ and TTC command
 - The "Start_Run" command generate a Synch. Pulse in the frame
 - Extract a Synch pulse from the frame (inside IGLOO2 FPGA)
 - Transmit to FEB through backplane

- 30 boards will be produced (including spares)
- Wire modification
 - Grounding of DC-DC converter (schematic mistake !)
 - Add decoupling capacitor on several discret footprints
 - Remove switch to command the GBTx configuration, the configuration will be from the FPGA (Triple Voting Rregister).
 - Change the power supply : to move the 2.5V to 3.3V and use diodes to generate the 2.5 V. 2 Amps diode available
- Standalone tests
 - Extract the TTC command from a frame In progress
 - Transmit Rd/Wr from the GBTx (3CU) to GBT_SCA (3CU)
- 3CU board in the crate with FEB
 - Transmit the Clock through backplane to all FEBs inside the same crate (At the moment the clock is present on the rear connector of the 3CU board)
 - Transmit the TTC command through backplane to all FEBs inside the same crate
 - Transmit Rd/Wr from the GBTx (3CU) to GBT_SCA (FEB) through backplane

Conclusion

- Two 3CU prototype boards available and under test
- No major corrections for the final version
- There are still some tests to do before production (test with FEB inside the same crate)
- The 3CU documentation is available and up to date

Olivier DUARTE - Upgrade calorimeter electronics PRR : 3CU_Board – February 13th, 2018

Thank you

SPARES

Production Schedule

3CU Board : Reset tree

411CA

LHCb

UPGRADE

3CU Delatching

Scrutinize mode

- Scrutinize the state (ON or OFF) off all board inside crate
- Storage delatching of FEB or Validation board (FEBn = OFF).
- Switching ON or OFF of FEB or Validation (FEBn= ON or OFF).

SLVS standard

SLVS (Scalable Low Voltage Standard)

- JEDEC standard: JESD8-13
- Differential voltage based signaling protocol.
 - · Voltage levels compatible with deep submicron processes.
 - Typical link length runs of 30cm over PCB at 1Gbps.
 - Low Power, Low EMI
- Application in data links for Flat Panel displays in mobile devices.
 - Mobile Pixel Link, MPL-2 (National semi.)

<u>SLVS specifications brief</u> 2 mA Differential max Line impedance: 100 Ohm Signal: +- 200 mV Common mode ref voltage: 0.2V

