

An open-source, ZYNQbased IPMC solution

13th xTCA Interest Group Meeting

Marcelo Vicente (University of Wisconsin-Madison) on behalf of the ATCA APx Consortium

- Develop a highly versatile IPMC platform for ATCA applications based on Xilinx ZYNQ SoC:
 - Exploit fast ARM Cortex-A9 processor and high FPGA parallelism for time-critical decisions
 - Support for a high number of peripherals (power controllers, fast ADCs, DACs, temperature sensors, RTMs, JTAG, etc.)
 - Previous experience with ZYNQ designs
 - **Open-source** and **NDA-free** (both hardware and software)

- 244-pin LP miniDIMM form factor (82mm x 30mm, 1mm thickness)
- Pinout similar to other IPMCs using the 244 DIMM form factor
- GPIOs can be configure to standard or custom interfaces: I2C, SPI, UART, MMC, XVC, etc.
 - Facilitates routing and layout of carrier PCB due to the extra flexibility

17/04/2018

- High-level realtime framework:
 - FreeRTOS: Per-service threads allow clean separation of code and prioritization of critical tasks
 - C++: Object-Oriented structure allows clean encapsulation of different modules and subcomponents and easy customization for any number of instances
 - **IwIP**: Provides easy to use TCP/IP for various network services. (console, upgrades, XVC, monitoring, etc.)
 - Services: Service based framework allows easy coordination & management of many varied tasks

- Easy to add new features or services by writing and instantiating a task thread.
- Publisher/Subscriber notifications & message delivery for tasks
- Granular logging configures per-service verbosity at runtime
- Watchdog protection configurable at a per-task level for specific needs
- PL-supported tasks for realtime power, sensor, hardware management, XVC & more

• Easy reconfiguration for similar application by rearranging existing component with OO & inheritance

```
104 PS_SPI *ps_spi0 = new PS_SPI(XPAR_PS7_SPI_0_DEVICE_ID, XPAR_PS7_SPI_0_INTR);
```

- 105 eeprom_data = new SPI_EEPROM(*ps_spi0, 0, 0x8000, 64);
- 106 eeprom_mac = new SPI_EEPROM(*ps_spi0, 1, 0x100, 16);
- 107 persistent_storage = new PersistentStorage(*eeprom_data, LOG["persistent_storage"], SWDT);
- 108 persistent_storage->register_console_commands(console_command_parser, "eeprom.");
- Base services (terminal, IPMB communication, storage, etc.) included as primary components of the framework

[NOTI] Our IPMB0 hardwa	re address	is 72					
[NOTI] ************************************	******	*****	******	******	*******	*****	*****
University of Wisconsin IPMC f60c7d1							
M Vivada (inna svivada adv/compan/vv inna/TDMC an							
M Vivado/ipmc_zynq_vivado.sdk/common/uw-ipmc/IPMC.cc							
*****							*****
[INF0] Request received	on ipmb0:	0.20	-> 0.7	2: 06.0	1 (seq 0)	1) []	
[NOTI] Request received	on ipmb0:	0.20	-> 0.7	2: 06.0	1 (seq 0)	1) []	(duplicate)
[NOTI] Request received	on ipmb0:	0.20	-> 0.7	2: 06.0	1 (seq 0)	1) []	(duplicate)
> ps							
	sePrio CurP	rio S	tackHW	CPU% CPI	J		
4 IDLE	Θ		155				
2 ipmb0	4			<1% 235			
	3			<1% 29	5		
1 PersistentFlush	1	1	1783	<1% 92			
5 tmrd	5	5	401	<1% 55			
[NOTI] Request received	on ipmb0:	0.20	-> 0.7	2: 06.0	1 (seq 0	1) []	(duplicate)
>							

- Firmware and software expansion go hand-in-hand:
 - Using Xilinx IP packager in Vivado for AXI integration
 - IPs include firmware blocks and low-level drivers
- 1. Add firmware IP or custom VHDL in block design
 - Example of custom IP: Management Zone Control
 - Aggregates and manages related power trees
 - IP is configurable through GUI, driver will automatically adapt
 - Same procedure for Xilinx IPs and other custom IPs

			mgmt_zon	e_ctrl_0		
Management Zone Count	4	😒 [1 - 16]				
Hard Fault Count	64	🙁 [0 - 64]	hard_fault[63:0]	pwr_en[6:0] mz_enabled[3:0]		pwr_en[6:0]
Power Enable Pin Count	7	[0 - 32]	s_axi_aclk	irq	-	
C_VIO_INCLUDE			mgmt_zone_ctrl (I	Pre-Production)		

- 2. Use provided C++ drivers in framework or use expandable templates
 - Example C++ driver for Management Zone Control

```
/**
 * A single management zone.
 */
class MGMT_Zone {
 public:
    const u16 DeviceId; ///< The DeviceId of the controller hosting this zone.
    const u32 MZNo; ///< The MZ number within the MZ Controller
    MGMT_Zone(u16 DeviceId, u32 MZNo);
    virtual ~MGMT_Zone();
    virtual void set_power_state(PowerAction action);
    virtual bool get_power_state(bool *in_transition=NULL);
    /**/
};</pre>
```

• Drivers are initialized on dedicated function in framework

```
void driver_init(bool use_pl) {
    /**/
    // Create required instances for management zones
    for (int i = 0; i < XPAR_MGMT_ZONE_CTRL_0_MZ_CNT; ++i)
        mgmt_zones[i] = new MGMT_Zone(XPAR_MGMT_ZONE_CTRL_0_DEVICE_ID, i);
    /**/
    }
17/04/2018</pre>
```


• Controller Development Board (CDB)

- Development platform for several key technologies that will be used on other blades
- Test platform for IPMCs and MMCs with Shelf Manager connectivity via the backplane
- Several IPMC peripherals available:
 - IPMB-A and IPMB-B
 - I2C, SPI, MDIO
 - Ethernet Switch Module
 - See backup
 - etc..

- Framework under GPL license:
 - Full rights to customize, reuse or modify, so long as software changes are shared
 - No license associated with hardware design
- Initial public GitHub release expectancy:
 - Hardware design in Altium Design: < Q4 2018
 - Software framework & IPMC package: < Q4 2018

Interested peers are welcome to get in touch with us: <u>marcelo.vicente@cern.ch</u>

We will reach out when the project is released **Thank you!**

Backup

- Pooling of efforts in ATCA Processor hardware, firmware and software development
 - Present efforts include CMS Phase-2 Calorimeter, Correlator and Muon Triggers; ECAL Barrel, CSC and GEM readouts.
- Multiple ATCA processors and mezzanine board types
- Modular design philosophy, emphasis on platform solutions with flexibility and expandability
- Reusable circuit, firmware and software elements

- Compact 6-port 1Gb ethernet switch module (40mm x 35mm)
 - 4x BASE-T and 2x SGMII interfaces available
- Unmanaged with low to no maintenance required
- Monitoring via UART and status LEDs provided by serial-out interface
- Circuit fully validated on CDB
- Available by Q3 2018

>p uPort	iPort	cPort	MIIM Bus	MIIM Addr	PHY/Serdes	CRC uPatch	Link	Status
1	0	0	0	0x00	FERRET 7512	No uPatch	Up -	1GFDX FC(D)
2		1	0	0x01	FERRET 7512	No uPatch	Down	
3	2	2	0	0x02	FERRET 7512	No uPatch	Down	
4			0	0x03	FERRET_7512	No uPatch	Up -	1GFDX FC(D)

