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The era of multi-messenger observations

a— Joint publication of LIGO, VIRGO, Current wide FoV gamma-
@8y  INTEGRAL, Fermi, IceCube, Pierre Auger ... ray observatories
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+ Simultaneous observation of a Gravitational Wave + electromagnetic
counterparts

+ Study of transient phenomena in all energy windows is one of the main
ingredients
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Station: HAWC vs LATTES
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HAWC
(present detector)

LATTES
(next generation)
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Station: HAWC vs LATTES
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Station: HAWC vs LATTES
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Simulation Framework -

¢+ End-to-end realistic g 10
simulation S 0f
B 10°F |
+ Extensive Air Showers: 3 oL
CORSIKA ST
+ v7.6400 with Fluka2011.2¢ 1
¢+ More than 50 000 gamma/proton  10°F
shower simulated randomly 0k
between 10 GeV - 300 TeV 3

¢+ Gammas have a fixed zenith
angle of 10 degrees

+ Observation level at 5200 m of
altitude

+ Detector simulation: Geant4

+ v10.1.3
+ Corearray 20 000 m?

¢+ Each shower isresampled 100
times over a big area containing
all the array
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Simulation Framework

¢+ Reconstruction

+ First order analyses with little optimization only to
demonstrate principle

+ Performance and sensitivity

Astroparticle Physics 99 (2018) 34-42

Contents lists available at ScienceDirect

- ASTROPARTICLE

PHYSICS

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Design and expected performance of a novel hybrid detector for
very-high-energy gamma-ray astrophysics

P. Assis®", U. Barres de Almeida©, A. Blanco¢, R. Conceigdo*"*, B. D'Ettorre Piazzoli®,
A. De Angelis#>2 M. Doro™, P. Fonted, L. Lopes¢, G. Matthiae!, M. Pimenta®?, R. Shellard®,
B. Tomé =P
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LATTES expected performance

+ Trigger and effective area

¢+ Core reconstruction

¢+ Energy reconstruction

+ Geometry reconstruction

¢+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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LATTES expected performance

+~ Trigger and effective area

+ Core reconstruction

+ Energy reconstruction

+ Geometry reconstruction

¢+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Trigger efticiency :
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+ Use WCD stations to trigger at low energies

+ Trigger condition
+ Station: require more than 5 p.e. in each PMT
+ Event: require 3 triggered stations 10




LATTES expected performance

+ Trigger and effective area

+ Core reconstruction

¢+ Energy reconstruction

+ Geometry reconstruction

+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Shower core reconstruction -

¢+Use the WCD signal Average LoF

+Barycenter
+ Initial guess

+ Works but the core is always

reconstructed inside the
array

+Fitthe WCD LDF

+ Fit photon average LDF to fix
the shape
+ Functioninspired in HAWC
+ Nearly no evolution with
energy
+ Use this form to find the
maximum, i.e.the shower
core

WCD signal

1 #2207 n N )
2mo? 0.5+ |Z; — Z|/R,,)3
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Shower core reconstruction ‘

CoreRec inside array - E =1334 GeV

+Test whether the shower

(St . S
is inside/outside the S =l_;ql; _
§1.5— - =
array B . .
+ Explore LDF topology % -+ -
+|s maximum observed ot !
inside of array? E !
+ Currently exploring the <3 1'4"'1'6"H'é"é"é'z;;pg'lgg'yges'"gn'e;;s
quality of the fit ~
+Fixed cut for all energies o
+Resolution better than ol L
10 meters for showers § .
above 300 GeV ; ——
10° 10°
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LATTES expected performance

+ Trigger and effective area

+ Core reconstruction

+ Energy reconstruction

+ Geometry reconstruction

¢+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Energy reconstruction

Ey — Simulated energy
E — Reconstructed energy

Energy Calibration Energy Resolution
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+ Use as energy estimator the total signal recorded by WCDs
+ Use only shower coresreconstructed inside array

+ Energyresolution at low energy dominated by shower
fluctdations




LATTES expected performance

+ Trigger and effective area

+ Core reconstruction

¢+ Energy reconstruction

+ Geometry reconstruction

¢+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Reconstruction of shower geometry

+ Use RPC hit time
information

+ Take advantage of high
spatial and time resolution

+ Used time resolutionof 1 ns

R. Conceicao 1 7



Reconstruction of shower geometry

¢ Use RPC hit time
information

+ Apply previous shower
rec quality cuts

+ Apply cuts on the
number of registered
hits on the RPCs

¢+ Consider only RPCs in
triggered WCD stations

R. Conceigado 1 8



Reconstruction of shower geometry

+ Use RPC hit time
information

4 Perform shower
reconstruction

¢+ Use shower front plane
approximation

+ Analytical procedure

barycenter b

R. Conceigao 1 9



Reconstruction of shower geometry

+ Use RPC hit time
information

+ Identify late arrivals
with respectto Rec
Shower Front

+ Mainly low energy
electronsthat lost
correlation with
shower front

R. Conceigao 20



Removal of late arrivals

+ Example of a vertical gamma shower

+ Plot depicts arrival time (ns) distance
to simulated shower core (m)

40
30
20
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Reconstruction of shower geometry

+ Use RPC hit time
information

+ Repeat fit without
arrivals

+ Initial guess for next
step

~ — showers; § = 10°

Oy eg [d€Q]

10? 108
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Impact of shower curvature
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Solution: implement a conic fit instead of fitting a plane

x2=Z(c-(Tn—T0)—Xn-l—Yn-m—)2
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Reconstruction of shower geometry

+ Use RPC hit time
information

+ Fit the shower
geometry using a
shower conic front
model

+ Depends on core
position

£

0
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: : ti :\>
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Shower geometry reconstruction |

Olgg [dEQ]

0.5 °

E [GeV]

A good angular resolution can be achieved for
all events reconstructed inside the array

R. Conceicao 25
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LATTES expected performance =

+ Trigger and effective area

+ Core reconstruction

+ Energy reconstruction

Shower rec quality cuts

+ Geometry reconstruction

+ Gamma/hadron discrimination

+ Sensitivity to steady sources

R. Conceicao 26



Effective Area
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Even applying all quality cuts LATTES

gets an effective area of ~1000 m? for E = 100 GeV
R. Conceicao 2 7
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LATTES expected performance

+ Trigger and effective area

¢ Core reconstruction

+ Energy reconstruction

+ Geometry reconstruction

+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Looking for high-p; sub-showers

Imination
ignal far away from the shower core

ISCrI
igh s

+HAWC g/h d

+ Look for h

)

(>40 m
+ Take advantage of height of the tank to

distinguish muons from electrons

hadron shower

gamma shower
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Looking for high p, sub-showers

Signal in stations > 40m

+LATTES g/h discrimination
¢+ Use only stations with a sH 5
distance above 40 m
+S40: sum all WCD stations
Signal 00_ — 200 400 600
+S40_high: sum all WCD WCD signal [p.e.]

stations that have a signal
above the muon energy

threshold
¢+ Compute S40_high / S40
+Not optimized...

Efficiency

10? 10°

-
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High-energy discrimination strategy =

E,.. = 1334 GeV

Signal

— gamma
10°E — proton

102

-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 10 20 30 40 50 60 70 80 90

Feore [m]

+Lateral distribution function (LDF)

+LDF of gamma showers is more steep than the LDF
of hadron showers

R. Conceigao 3 1
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High-energy discrimination strategy

1 ] T ™

0.8 [~

Efficiency

0.6

0.4

0.2 — Photon

— Proton

o s g oa al A A PR T W W W W |
10° 10°

E [GeV]

Shower compactness discrimination variable allows
for a good background rejection which increases
with energy

R. Conceigao 32




Combine information

¢ Fisher discriminant
analysisto combine the
two variables
+ S40high/S40
+ Compactness
+S/JB =6 (at2TeV)

E,.. = 422 GeV

+LATTES MVA toolkit
created
+ ROOT:: TMVA
o TinyXML
¢ Python / C++

+Can easily be extended
to:

¢+ add more discrimination
variable

& use hig?\fl\er—order methods
BDT, ANN...

Compactness




LATTES g/h discrimination
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Although not optimized gamma/discrimination
results are already very encouraging

R. Conceigao 34



-

LATTES expected performance

+ Trigger and effective area

¢+ Core reconstruction

+ Energy reconstruction

+ Geometry reconstruction

¢+ Gamma/hadron discrimination

+ Sensitivity to steady sources
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Sensitivity to steady sources
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¢ Full line: full MC calculation for a source at 10 degrees in zenith
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Sensitivity to steady sources

+Dashed line: Crab transit as

seen by HAWC Broel Ny B
+ Degradation of effectivearea g~ —
with zenith angle estimated o L
from electromagneticenergy  «f

t d 102 10°
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Sensitivity to steady sources

+Dotted line: CR all- 0 g

spectrum %
+ Additional elements (He, N, d
Fe) Y i =
+ Assume that LATTES cannot Sy« |
distinguish gammas from E s T
Irons 107
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Dembinski etal (2017)

R. Conceicao 3 8



Summary :

+ LATTES shower reconstruction performance has
been evaluated yielding very good results
¢+ Shower trigger (effective area)
+ Shower core reconstruction
+ Shower energy reconstruction
¢ Shower geometry reconstruction
¢+ Gamma/hadron discrimination

¢ LATTES capabilities are far from being fully explored

¢ Possible improvements already identified

¢+ Sparse array to veto far away high—ener?ﬁ/ showers (main
background source)- see Bernardo's Ta

+ Use RPC patterns to discriminate g/h
+ Better assess LATTES ability to reconstruct

¢ Inclined showers
+ Heavier primaries induced showers

R. Conceicao 3 9
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Backup slides
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Towards LATTES sensitivity...

Shower simulation

(CORSIKA)

Detector simulation

(Geant4)

Shower reconstruction
(LATTESrec)




LATTES: a hybrid detector

¢+ Thinlead plate WCD vs RPC (station level)

+ To convertthe secondary
photons

+ Improve geometric
reconstruction

+ Resistive Plates Chamber
+ Sensitive to charged particles

+ Goodtime and spatial
resolution omen [ 10

¢+ Improve geometric o
reconstruction b _ Nosignal

+ Explore shower particle - 0 N
patterns at ground 29Ny

+ Water Cherenkov Detector

+ Sensitive to seconda(?/
photons and charge
particles

¢+ Measure energy flow at S
ground o it
¢+ Improve trigger capability :
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Altitude [deq]
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Accidentals contamination

Considering a time window D, the mean number of stations that
randomly trigger within D is :

ng=N;xRxD

with N, the # of stations in the array and R the single station trigger
rate.

For LATTES N, = 3600 and R was estimated from MC simulations to
be of the order of 500 Hz; taking D ~ 200 nsyields:

Ng ~ 0.4

to be compared with the minimum of stations required in a shower
trigger, ng=3.

In any case a detailed MC simulation of the impact of the
accidentals should be performed !




Random triggers

Rate of n-fold random coincidences in LATTES as a function of
the single station trigger rate
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Cosmic rays and station trigger rate

1 07 = Event rate

= = = Event rate x nb. triggered statlons

2 M M M 1 M M M M 1 M M M M | M M 2 M
0 500 1000 1500 2000
E, [GeV]
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simulated events

Reconstruction efficiency

Before quality cuts

—— gamma ( N = 1758922 )

---- proton (N =10768813)

| 2 3 4 5 |
Iog(EO/GeV)

After quality cuts

—— gamma (N = 6906 )

----- proton ( N =85555)

simulated events

Iog(Eo/GeV)
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Ongoing developments and tests on RPCs, electronics
and read-out systems

RPC based muon hodoscope for
precise studies of the Auger WCD

Top RPC

Gianni
Navarra
WCD

Bottom RPC

RPC hodoscope

R. Conceigao 49




