

Status of Detector R&D Yellow Report

CLICdp collaboration meeting August 29th, 2018

<u>Dominik Dannheim (CERN)</u>, Katja Krüger (DESY), Aharon Levy (Tel Aviv), Andreas Nürnberg (KIT), Eva Sicking (CERN)

Scope

- Review of current status and future plans for CLIC detector technology R&D
- Backup document for Input to European Strategy Update process
- Review of results achieved since CLIC CDR in 2012:
 - CLIC detector overview and experimental conditions
 - Vertex/tracker
 - Main calorimeters → CALICE
 - Forward calorimeters → FCAL
 - Readout electronics / DAQ
 - Appendices for major software and hardware tools developed within the CLIC detector R&D studies (Timepix3 beam telescope, Caribou DAQ, Allpix² simulation)
- Focus on new results + CLIC-specific R&D → emphasis on vertex/tracker
- Review style, mostly citing already published material (notes, publications, proceedings, theses)
- Aim for ~100 pages (no strict limitation, but need to keep balance btw. chapters)
- Publication as CERN Yellow Report, reviewed within CLICdp

Vertex/Tracker

 3.1. Requirements (*)	ngs, new,
 3.2. Detector concept (*)	ngs, new,
3.3. Hybrid readout ASICs	ngs, new,
3 3 1 Timeniy	iew,
	iew,
3.3.2 Timenix 3	•
3.3.3. CLICpix (*)	<u>ea</u>
3.3.4. CLICpix2 .(*)	
3.4. Hybrid passive sensor assemblies	
3.4.1. Fine-pitch bump bonding • Status:	
3.4.2. Thin planar sensors	
3.4.2.1. Timepix(3) study, thickness	
3.4.2.2. CLICpix(2) resolution at 50um pitch, thickness	
3.4.3. Active-edge sensors (*)	
3.4.4. Sensors with enhanced lateral drift (ELAD)	
3.5. CMOS sensors	
3.5.1. Capacitively coupled active High-Voltage CMOS sensors.	
3.5.2. Monolithic High-Voltage CMOS sensors (*)	
3.5.3. Monolithic High-Resistivity CMOS sensors	
3.5.4. Monolithic SOI sensors	
3.6. Detector Integration	
3.6.1. Backend processing (18V)	
5.0.2. Dight weight support structures	
3.6.3. Assembly and cabling B. Beam telescope infrastructure (*)	
3.6.4. Cooling	
3.7. Summary and outlook	

Main Calorimeters

Calo	rimeters (10-12 p.)					
4.1.	Requirements for calorimetry at CLIC					
4.2.	Detector concept					
	4.2.1. ECAL					
4.3.	 4.2.2. HCAL					
4.4.	Hadronic Calorimeter (HCAL) identified					
	4.4.1. Sensor and ASIC R&D 4.4.2. Assembly / mass production 4.4.3. Mechanics, cooling, integration 4.4.4. Power pulsing					
	4.4.5. Test-beam results					
	4.4.5.1. Energy resolution					
	4.4.5.4. Timing					
4.5.	Summary and Outlook					

Forward Calorimeters

5 .	Very	forward	calorimeters	(6-8	p.)	
------------	------	---------	--------------	------	-------------	--

,	
5.1.	Requirements
5.2.	Detector concept
	5.2.1. Luminosity calorimeter (LumiCal) From CLICdet note
	5.2.2. Beam calorimeter (BeamCal)
5.3.	Mechanics
5.4.	Sensor & ASIC R&D
5.5.	Test-beam results
	5.5.1. Performance of a fully instrumented detector plane published
	5.5.2. Results from a multilayer stack
	5.5.3. Results from thin-sensor stack with tracking layers → publ.+thesis draft.
5.6.	Summary and outlook

- Chapter editor: A. Levy
- Aim for ~6-8 pages
- Main sources: CLICdet note, 2015 JINST 10 P05009, Eur. Phys. J. C 78 (2018) 135, thesis draft Itamar, conference proceedings Sasha and Veta (overlap with other ESU documents)
- Status:
 - chapter outline defined
 - Sources for material and contributors identified

Readout electronics / DAQ

6.	Readout	electronics	and	data	acquisition	system	(8-10	p .)
----	---------	-------------	-----	------	-------------	--------	-------	------------	---

6.1.	Detector readout requirements
6.2.	Subdetector implementation schemes (*)
	6.2.1. Example implementation for calorimeters
	6.2.2. Estimation of CLIC detector rates (*) → Readout overview table
6.3.	Power delivery and power pulsing
	6.3.1. Implementation example: vertex detector (*)
	6.3.2. Implementation example: calorimeters . → CALICE prototypes (from Katja)
6.4.	Summary and Outlook

- Chapter editor: E. Sicking (with help from S. Kulis, X. Llopart and CERN CMS DAQ group)
- Aim for ~8-10 pages
- Main sources: Notes, proceedings, <u>new estimates</u>
 (cf. Eva's presentation for advisory board review)
- Status:
 - chapter outline draft
 - 5 pages of text and figures (*), including first draft of r/o overview table

Timeline

- Mid September: first draft including all chapters
- Mid October: submission of final version to PubCom,
 ~1 week for initial feedback + implementing it
- End October: start of collaboration review (~3 weeks?)
- ~End November: deadline for review within CLICdp ,
 ~10 days for implementing comments
- December 1st: deadline for submission to CREB (CERN Reports Editorial Board)
- December 8th: feedback from (formal) CREB review, assignment of CERN-2018-xxx number (→ reference for summary report), few days for implementing comments (final editing / publishing support from CERN library group t.b.c.)
- Mid December: submission to CDS, arXiv
- December 18th: deadline for community input to ESU