

Status Report on Detector Performance Note

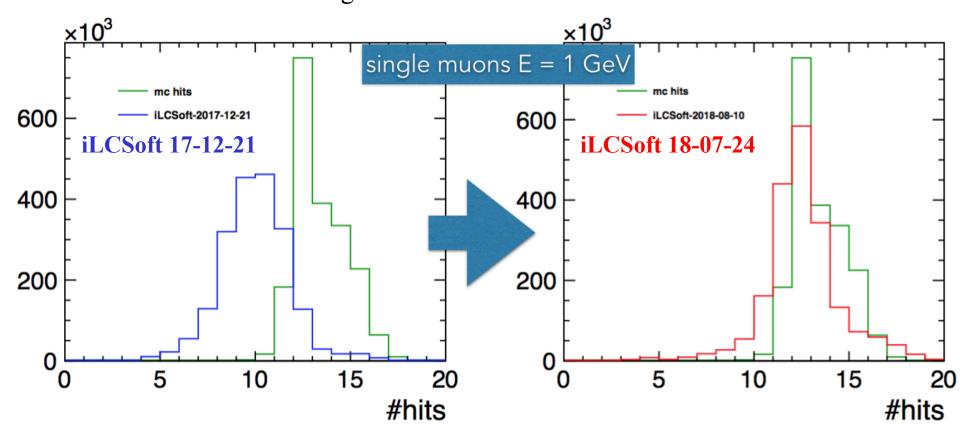
CLICdp Collaboration Meeting 2018

Emilia Leogrande, André Sailer, Matthias Weber (CERN)

1

Status of Note

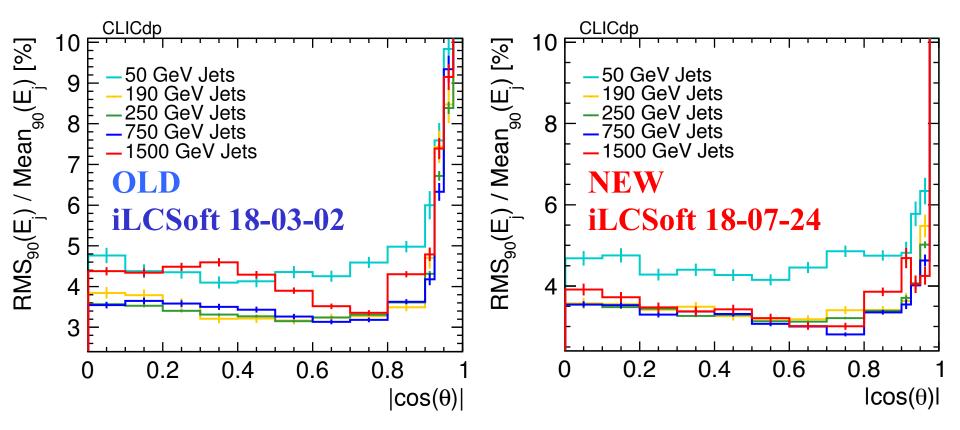
Latest version on gitlab: all suggestions by the advisory committee implemented and committed into


https://gitlab.cern.ch/CLICdp/Publications/DraftDocuments/Note_DetectorPerformance

Phys	sics Per	formance	Study many objects:
4.1	Simula	tion and Reconstruction	Tracking : impact parameter
	4.1.1	Event Generation	& p _T resolutions, efficiencies
	4.1.2		
	4.1.3	Event Reconstruction	background)
	4.1.4	Treatment of $\gamma\gamma \rightarrow$ hadrons Background	Flavour tagging
4.2	Performance for Lower Level Physics Observables		Single particle peformance:
	4.2.1	Single Particle Performances	Lepton identification with and
	4.2.2	Performances for Complex Events	without background
	4.2.3	Jet Energy Resolution	Electron Reconstruction in
	4.2.4	Flavour Tagging	Lumi & BeamCal
	4.2.5	Performance of Very Forward Calorimetry	Jet Energy Resolution
	4.2.6		(without BG)
			MET Resolution with and
			without BG
CLICd	lp Plenary,	2	Matthias Weber

Lots of additional work: Prompt Tracks

All issues for prompt tracks (treatment of split and clone tracks) are resolved → see Emilia's talk this morning in Software session



Excess tracks reduced for single muons from 5% down to 0.3 %, for bbar events from 25 % to 6 %

Impact of Prompt Tracks on Jet Reconstruction

Big impact of tracking modifications on jet energy resolution

Clear improvement of jet energy resolution for high jet energies 4.5 % \rightarrow 3.5-4 % due to track modifications

Significant improvement in jet energy resolution for forward jets (better tracking for boosted jets)

NEW: jets with background

NEW: impact of $\gamma\gamma$ hadrons on jet energy resolution (3TeV conditions)

→ for 100 GeV increase from 4 % from 5-5.5% in barrel, 7 % in endcap) At high energy mild increase, besides for very forward jets

Ongoing work

Work in progress: conformal tracking for displaced tracks →b-tagging

→see Emilia's talk this morning in Software session

Add W/Z mass separation plots

Add and discuss plots for first energy stage, including plots for beam background levels for 380 GeV machine

- Track efficiency plots for 380 GeV dijet events with and without BG
- Jet Energy resolution plots for various jet energies with 380 GeV BG levels
- → So far discussed impact of 3 TeV background levels only

Outlook

Timeline for note:

Ready for review by begin of November

Plan to have note out by 1st of December

Should you feel something crucial is missing, please let us know in the coming days

BACKUP

8

Status of Note: First part

Latest version on github: all suggestions by the advisory committee implemented and committed into

https://gitlab.cern.ch/CLICdp/Publications/DraftDocuments/Note_DetectorPerformance

1	Introduction				
2	CLICdet layout and main parameters				
	2.1	Overview			
	2.2	Vertex and Tracker			
	2.3	Calorimetry			
	2.4	Muon Detector System			
	2.5	Very Forward Calorimeters LumiCal and BeamCal			
3	3.1	The CLIC Beam			
3		of Summary of CLIC Experimental Conditions and Detector Requirements			
	3.2	Beam-Induced Backgrounds			
	3.3	Overview of Requirements for Physics Reconstruction			
	3.4	Impact of Backgrounds on the Detector Requirements			
		3.4.1 Impact on Vertex and Tracking Detectors			
		3.4.2 Backgrounds in ECAL and HCAL			
		3.4.3 Backgrounds in LumiCal and BeamCal			
	3.5	Overview of Detector Timing Requirements at CLIC			
	3.6	A detector at CLIC for 380 GeV, 1.5 TeV and 3 TeV			