

Tracking - status and plans -

Emilia Leogrande (CERN), on behalf of the CLICdp Collaboration

CLICdp Collaboration Meeting 29th August 2018

Content of the talk

Recap

- CLICdet tracking system
- Conformal tracking algorithm
- Where were we? Status at the April's Advisory Board Meeting
- Major updates in the reconstruction chain
- Where are we now? Current status
- Where do we plan to be? Future improvements

CLICdet tracking system

- \Rightarrow Total sensitive area = 0.84 m²
- ⇒ 25x25 μ m² pixel size
- ➡ 50 µm sensor thickness
- \Rightarrow assumed 3 µm single point res

- \Rightarrow Total sensitive area = 137 m²
- ➡ 50 µm x [1-10]mm microstrip size
- ➡ 200 μ m sensor thickness
- \Rightarrow assumed 7x90 µm single point res

Tracking system (vertex + tracker) coverage and material budget

Tracking system optimized to have full coverage for tracking reconstruction

Material budget

- vertex = $0.2\%X_0$ per single layer
- tracker = 1%X₀ per layer
- main support tube + cables = $2.5\%X_0$

Conformal tracking

Pattern recognition in conformal space

- cellular automaton for straight line search
- prompt tracks
 - minimum number of hits for track reconstru
 - from vertex to tracker hits
- displaced tracks
 - minimum number of hits for track reconstruit
 - from tracker to vertex hits

Tracks in the *uv* detector plane $y/(x^2 + y^2)$

January 19th, 2016

CLIC Workshop

Conformal tracking

Pattern recognition in conformal space

- cellular automaton for straight line search
- prompt tracks
 - minimum number of hits for track reconstru
 - from vertex to tracker hits
- displaced tracks
 - minimum number of hits for track reconstru
 - from tracker to vertex hits

Track fit

- January 19th, 2016 helix preme with a mis
- CLIC Workshop
- iterative Kalman filter
 - fit forward and smooth backward

 $\begin{cases} u = x/(x^2 + y^2) \\ v = y/(x^2 + y^2) \\ v = y/(x^2 + y^2) \end{cases}$ Tracks in the *uv* detector plane

Build tracks in conformal space

- all hits of the input collection are used as seeds
- from each seed, nearest neighbours search with kdtree
- creation of cells with valid hits
- creation of cellular tracks (chains of cells)
- linear regression fit to accept/reject cellular tracks

Build tracks in conformal space

- all hits of the input collection are used as seeds
- from each seed, nearest neighbours search with kdtree
- creation of cells with valid hits
- creation of cellular tracks (chains of cells)
- linear regression fit to accept/reject cellular tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10$ GeV: cellular automaton as in build
 - for tracks with $p_T < 10$ GeV: valid hits added one by one to the track

Build tracks in conformal space

- all hits of the input collection are used as seeds
- from each seed, nearest neighbours search with kdtree
- creation of cells with valid hits
- creation of cellular tracks (chains of cells)
- linear regression fit to accept/reject cellular tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10$ GeV: cellular automaton as in build
 - for tracks with $p_T < 10$ GeV: valid hits added one by one to the track

Full chain

Build tracks	Vertex barrel	Standard cuts
Extend tracks	Vertex endcap	Standard cuts
Build tracks	Vertex b + e	Standard cuts
Build tracks	Vertex b + e	Looser cuts (angle x 5)
Build tracks	Vertex b + e	Looser cuts (angle x 10)
Build tracks	Vertex b + e	Looser cuts (angle x 10; χ^2 x 20)
Extend tracks	Tracker collections	Looser cuts (angle x 10; χ ² x 20)
Build tracks	All collections	Displaced cuts

Resolution = σ of the distribution Δ (reconstructed - true)

Achieved desired d_0 resolution for high-energy muons well below the high-momentum limit of 5 μm

Resolution = σ of the distribution Δ (reconstructed - true)

Efficiency = fraction of pure reconstructed particles out of the reconstructable

whose majority of hits (>= 75%) belong to the same particle

- $|\cos\theta| < 0.99$
- #unique hits >=4

whose majority of hits (>= 75%) belong to the same particle

CLICdp Collaboration Meeting, August 29 2018, Emilia Leogrande, emilia.leogrande@cern.ch

CLICdp Collaboration Meeting, August 29 2018, Emilia Leogrande, emilia.leogrande@cern.ch

how many misassociated hits?

Fake rate = fraction of impure reconstructed particles out of the total reconstructed

- ♦ purity < 75%</p>
- purity = Nhits belonging to the associated MC Particle / total Nhits

how many misassociated hits?

Fake rate = fraction of impure reconstructed particles out of the total reconstructed

- purity = Nhits belonging to the associated MC Particle / total Nhits

how many misassociated hits?

Fake rate = fraction of impure reconstructed particles out of the total reconstructed

- purity = Nhits belonging to the associated MC Particle / total Nhits

Causes for imperfect track reconstruction

• split tracks: hits from one MCParticle assigned to track A and track B

- *clones*: tracks sharing 2 or more hits
 - were "treated" at the end of the build phase, not of the full pattern recognition
 - implementation not proper

1) geometrical overlap of modules

- tracks aligned with these overlaps leave double hits in the same detector layer (different modules)
- the algorithm was accepting only one hit per subdetector layer
- second track made out of the remaining aligned hits

=> SOLUTION: accept all hits (unless same subdetector, layer & module)

1) geometrical overlap of modules

2) the problem of "opening" the cuts progressively

Vertex barrel Vertex endcap	Standard cuts Standard cuts
Vertex b + e	Standard cuts
Vertex b + e	Looser cuts (angle x 5)
Vertex b + e	Looser cuts (angle x 10)
Vertex b + e	Looser cuts (angle x 10; χ^2 x 20)
Tracker collections All collections	Looser cuts (angle x 10; x ² x 20) Displaced cuts

- tracks aligned with these overlaps leave double hits in the same detector layer (different modules)
- the algorithm was accepting only one hit per subdetector layer
- second track made out of the remaining aligned hits

=> SOLUTION: accept all hits (unless same subdetector, layer & module)

- separate "pieces" of track reconstructed in different phases
 - => SOLUTION: merge the looser cuts steps in one

3) treatment of clones

• check for clones was implemented only at the end of the build phase, not of the full pattern recognition chain

=> SOLUTION: clones treated in ClonesAndSplitTracksFinder processor, run after with the ConformalTracking processor

<if condition="Config.TrackingConformal"> <processor name="MyConformalTracking"/> <processor name="ClonesAndSplitTracksFinder"/> </if>

- if clones, typically the longest track is preferred, unless the χ^2 of the shortest is better than twice the χ^2 of the longest
- somehow arbitrary cut, that lead to rejecting ~half of the hits

=> SOLUTION: longest always preferred ==> NB: at the moment, this has been fixed only in the build. TO BE FIXED also in ClonesAndSplitTracksFinder [but minor effect at this stage]

4) the extend for low p_T tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10 \text{ GeV}$: cellular automaton as in build
 - for tracks with $p_T < 10 \text{ GeV}$: valid hits added one by one to the track

4) the extend for low p_T tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10 \text{ GeV}$: cellular automaton as in build
 - for tracks with $p_T < 10 \text{ GeV}$: valid hits added one by one to the track

4) the extend for low p_T tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10 \text{ GeV}$: cellular automaton as in build
 - for tracks with p_T < **10 GeV**: valid hits added one by one to the track

• problematic when a "wrong" hit is added

=> SOLUTION: p_T threshold down to 1 GeV [and made customizable in the steering file]

4) the extend for low p_T tracks

Extend tracks in conformal space

- last hit of built tracks is used as seed
- from each track endpoint, nearest neighbours search with kdtree
 - for tracks with $p_T > 10 \text{ GeV}$: cellular automaton as in build
 - for tracks with p_T < **10 GeV**: valid hits added one by one to the track

• problematic when a "wrong" hit is added

=> SOLUTION: p_T threshold down to 1 GeV [and made customizable in the steering file]

5) restructuring of the tracking code

<!--steps for the pattern recognition--> <parameter name="Steps" type="StringVec"> [VXDBarrel] @Collections : VXDTrackerHits @Parameters : MaxCellAngle : 0.005; MaxCellAngleRZ : 0.005; Chi2Cut : 100; MinClustersOnTrack : 4; MaxDistance : 0.02; HighPTCut: 10.0; @Flags : HighPTFit, VertexToTracker @Functions : CombineCollections, BuildNewTracks [VXDEncap] @Collections : VXDEndcapTrackerHits @Parameters : MaxCellAngle : 0.005; MaxCellAngleRZ : 0.005; Chi2Cut : 100; MinClustersOnTrack : 4; MaxDistance : 0.02; HighPTCut: 10.0; @Flags : HighPTFit, VertexToTracker @Functions : CombineCollections, ExtendTracks [LowerCellAngle1] @Collections : VXDTrackerHits, VXDEndcapTrackerHits @Parameters : MaxCellAngle : 0.025; MaxCellAngleRZ : 0.025; Chi2Cut : 100; MinClustersOnTrack : 4; MaxDistance : 0.02; HighPTCut: 10.0; @Flags : HighPTFit, VertexToTracker, RadialSearch @Functions : CombineCollections, BuildNewTracks [LowerCellAngle2] @Collections : @Parameters : MaxCellAngle : 0.05; MaxCellAngleRZ : 0.05; Chi2Cut : 2000; MinClustersOnTrack : 4; MaxDistance : 0.02; HighPTCut: 10.0; @Flags : HighPTFit, VertexToTracker, RadialSearch @Functions : BuildNewTracks, SortTracks [Tracker] @Collections : ITrackerHits, OTrackerHits, ITrackerEndcapHits, OTrackerEndcapHits @Parameters : MaxCellAngle : 0.05; MaxCellAngleRZ : 0.05; Chi2Cut : 2000; MinClustersOnTrack : 4; MaxDistance : 0.02; HighPTCut: 1.0; @Flags : HighPTFit, VertexToTracker, RadialSearch @Functions : CombineCollections, ExtendTracks [Displaced] @Collections : VXDTrackerHits, VXDEndcapTrackerHits, ITrackerHits, OTrackerHits, ITrackerEndcapHits, OTrackerEndcapHits @Parameters : MaxCellAngle : 0.05; MaxCellAngleRZ : 0.05; Chi2Cut : 1000; MinClustersOnTrack : 5; MaxDistance : 0.015; HighPTCut: 10.0; @Flags : OnlyZSchi2cut, RadialSearch @Functions : CombineCollections, BuildNewTracks </parameter>

5) restructuring of the tracking code

@0

@F

@F

Where are we now? Current status

Improvements in the tracking reflected in the hits distribution...

Where are we now? Current status

Improvements in the tracking reflected in the hits distribution...

... and in the percentage of tracks in excess

- for single muons: from 5% down to 0.3%
- for bb events: from 25% down to 6%

Where are we now? Current status

Efficiencies are not disrupted - in some cases more "realistic"

Where do we plan to be?

17

- recover the inefficiencies
- recover the missing hits

Displaced tracks - recover the inefficiencies

Some inefficiencies are avoided by simply "opening" the cuts

- search angle for nearest neighbors
- max distance for cell extrapolation

Where do we plan to be?

Displaced tracks - recover the missing hits

Tested in **single particle** events

- at pattern recognition level, hits not picked up for two reasons:
 - not found as neighbors
 - found as neighbors but rejected by cuts (cell angle, χ^{2})

=> WORKING SOLUTION: open the cuts

Where do we plan to be?

Displaced tracks - recover the missing hits

Tested in single particle events

- at pattern recognition level, hits not picked up for two reasons:
 - not found as neighbors
 - found as neighbors but rejected by cuts (cell angle, χ^{2})

=> WORKING SOLUTION: open the cuts

Unfortunately not so simple for real events

- opening the cuts increases the combinatorics
- reconstruction time grows exponentially
- safety check on number of candidate tracks restores the cuts to the starting tight values

=> WORK-IN-PROGRESS SOLUTION: cellular automaton ***per layer***

Summary

- ✓ Where were we? Status at the April's Advisory Board Meeting
 - ☑ Good efficiency and resolution performances
- \blacksquare Major updates in the reconstruction chain
 - ☑ Fixed split tracks, clones, tracks hitting overlapping modules
 - Readapted reconstruction steps and default cuts
- ☑ Where are we now? Current status
 - \blacksquare Prompt tracks in single particle and real events
 - Recovered missing hits and drastically reduced multiple tracks
- Where do we plan to be? Future improvements
 - Displaced tracks
 - Test a new method of cellular automaton <u>per layer</u>
 - Work on reducing the combinatorics (=> number of valid track candidates)
 - Tracking ready for b- and c- tagging

References

© Code repository <u>https://github.com/iLCSoft/ConformalTracking</u>

A detector for CLIC: main parameters and performance [in preparation]
<u>https://gitlab.cern.ch/CLICdp/Publications/DraftDocuments/</u>
<u>Note_DetectorPerformance</u>

 Pattern recognition for the CLIC detector using conformal mapping and cellular automaton [embryonic stage]
<u>https://gitlab.cern.ch/CLICdp/Publications/DraftDocuments/</u>
<u>Note_ConformalTracking</u>

Extras