

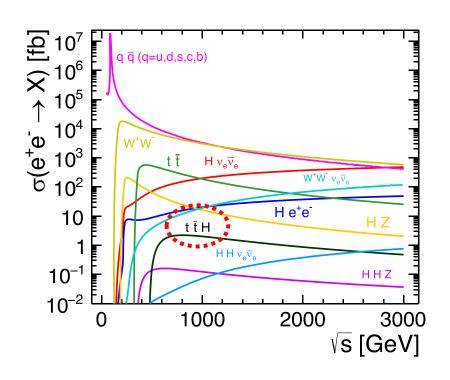


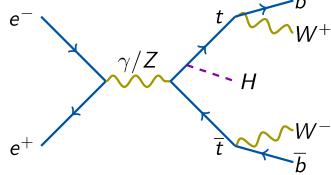
# Update on the $t\bar{t}H$ studies at 1.4 TeV at CLIC

Yixuan Zhang

28-29 August 2018
CLICdp Collaboration Meeting, CERN







# Outline

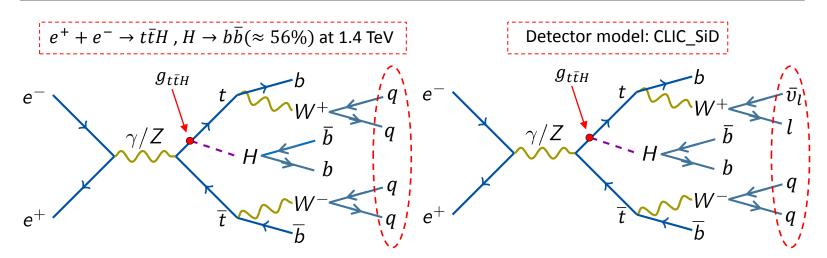
- ☐ The top-Yukawa analysis at 1.4 TeV
  - Backgrounds reduction
  - Results with polarised beam and new luminosity scheme
- CP properties of Higgs boson
  - Sample production and cross-section calculation
  - Preliminary sensitivity to CP mixing (cross-section)
  - Up-down asymmetry
  - Preliminary sensitivity to CP mixing (cross-section + up-down asymmetry)
- Summary



# $e^+ + e^- \rightarrow t\bar{t}H$ production






#### Advantages:

- Top quark (heaviest fermion) ⇒ strongest Yukawa coupling
- The ttH process is accessible in electronpositron collisions with at least 500 GeV centre-of-mass energy.
- 3. Probe of the CP properties in the ttH process <u>Disadvantages:</u>
- 1. Complex final states
- 2. Large backgrounds, e.g.  $t\bar{t}$



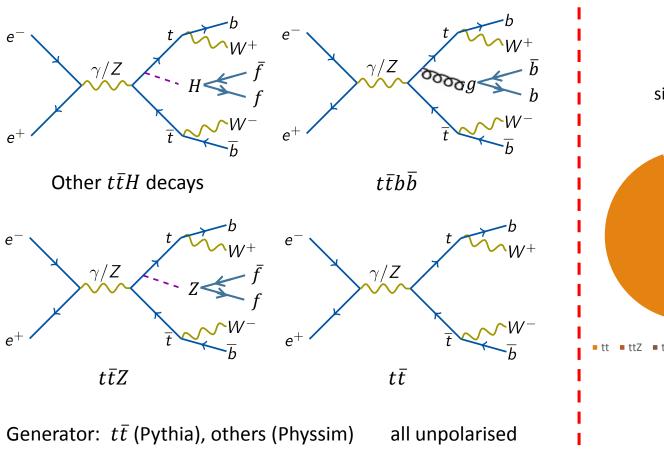


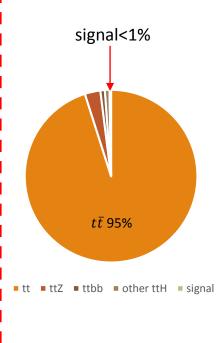
### Analysis Strategy



#### Hadronic channel: 6 jets

#### Semi-leptonic channel: 4 jets


| $tar{t}H$ decay                                                         | $BR$ of $tar{t}H(bar{b})$ | No. Leptons | Channel classification |
|-------------------------------------------------------------------------|---------------------------|-------------|------------------------|
| $t\bar{t} \rightarrow 6jets + H \rightarrow b\bar{b}$                   | 46%                       | 0           | Hadronic               |
| $t\bar{t} \rightarrow 4jets + 1l + 1\bar{v}_l + H \rightarrow b\bar{b}$ | 45%                       | 1           | Semi-leptonic          |
| $t\bar{t} \rightarrow 2jets + 2l + 2\bar{v}_l + H \rightarrow b\bar{b}$ | 9%                        | >1          | Not included           |


<sup>\*</sup>Previous analysis described in CLICdp-Note-2014-001





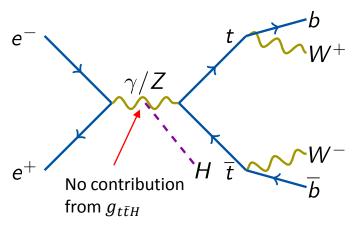
# Backgrounds










### Selection efficiency after BDTG cut

| Process                                        | Evt in                | Evt with       | Evt with      | Evt pass             | Evt pass       |
|------------------------------------------------|-----------------------|----------------|---------------|----------------------|----------------|
|                                                | $1.5 \text{ ab}^{-1}$ | 0 Lepton       | 1 Lepton      | Had BDT              | SL BDT         |
| $t\bar{t}H$ , 6 jets, $H \rightarrow b\bar{b}$ | 647                   | 555 (85.9%)    | 86 (13.4%)    | (367 (56.8%)         | 38 (5.91%)     |
| $t\bar{t}H$ , 4 jets, $H\rightarrow b\bar{b}$  | 623                   | 208 (33.4%)    | 432 (69.4%)   | 1 (0.14%)            | 270 (43.4%)    |
| tīH, 6 jets, H→bb                              | 473                   | 276 (58.4%)    | 143 (30.2%)   | 54 (11.4%)           | 11 (2.32%)     |
| tīH, 4 jets, H→bb̄                             | 155                   | 70 (15.4%)     | 237 (52.2%)   | 8 (1.85%)            | 22 (4.88%)     |
| $t\bar{t}H$ , 2 jets, $H\rightarrow b\bar{b}$  |                       | 9 (6.18%)      | 53 (35.6%)    | 2 (1 ttH             | 1.8%)          |
| $t\bar{t}H$ , 2 jets, $H \rightarrow b$        | \\                    | 4 (3.90%)      | 27 (25.0%)    | 0 22%                | tt %)          |
| tīZ, 6 jets                                    | \                     | 3 (75.0%)      | 445 (15.7%)   | 34                   | 45% %)         |
| tīZ, 4 jets                                    | · ·                   | (20.9%         |               | 5                    | ))             |
| tīZ, 2 jets                                    |                       | 5 (5.49%)      | 214 (32.5%)   | ttbb<br>17%          | 6)             |
| tībb, 6 jets                                   | tt                    | 20 (87.5%)     | 95 (11.6%)    | 326 tt               | (%)            |
| tībb, 4 jets                                   | 95%                   | 193 (24.3%)    | 552 (69.5%)   | 57 (7. <sub>16</sub> | $\sim 10^{-1}$ |
| tībb, 2 jets                                   | 191                   | 11 (5.84%)     | 70 (36.7%)    | 2 (0.82%)            | 18 (9.70%)     |
| tī                                             | 203700                | 116181 (57.0%) | 76732 (37.7%) | 498 (0.24%)          | 742 (0.36%)    |
| total ttH signal                               | 2458                  | 1123 (45.7%)   | 978 (39.8%)   | 433 (17.6%)          | 365 (14.8%)    |
| total background                               | 211749                | 119846 (56.6%) | 79834 (36.3%) | 1287 (0.61%)         | 1280 (0.60%)   |
| Significance                                   |                       |                |               | 10.44                | 9.00           |





### Result on top-Yukawa coupling



To translate the <u>cross-section</u> measurement into <u>top-Yukawa coupling</u> at 1.4 TeV, a linear approximation with NLO QCD prediction is used (thanks to Juergen Reuter and Vincent Rothe from DESY<sup>[1]</sup>):

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.503 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$

|               | Significance | LO $\Delta \sigma/\sigma$ | NLO $\Delta \sigma/\sigma$ | NLO $\Delta oldsymbol{g_{ttH}}/oldsymbol{g_{ttH}}$ | Polarised<br>beam<br>(-80,0) | *L = 2.5ab <sup>-1</sup><br>+<br>Polarisation |
|---------------|--------------|---------------------------|----------------------------|----------------------------------------------------|------------------------------|-----------------------------------------------|
| Hadronic      | 10.44σ       | 7 20/                     | 7.50/                      | 2.00/                                              | 2.20/                        | 2.70/                                         |
| Semi-leptonic | 9.00σ        | 7.3%                      | 7.5%                       | 3.8%                                               | 3.3%                         | 2.7%                                          |

[1] JHEP 1612 (2016) 075

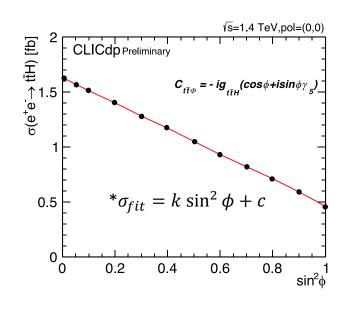
\* New scheme





### CP violation in $t\bar{t}H$ production

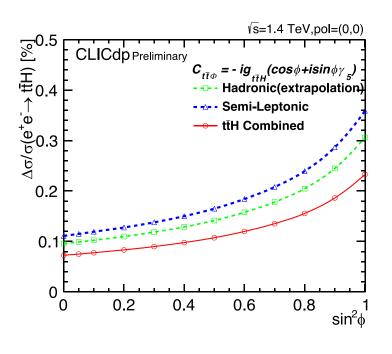
Parametrisation of CP mixing in the ttH coupling:

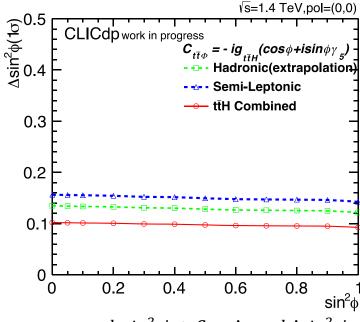

- $C_{t\bar{t}\Phi} = -ig_{t\bar{t}H}(a + ib\gamma_5)$
- SM: a = 1, b = 0; pure CP-odd: a = 0,  $b \ne 0$ .

assume  $a^2 + b^2 = 1$  with  $a = \cos(\phi)$  and  $b = \sin(\phi)$  where  $\phi$  is the mixing angle.

 $\underline{t\bar{t}H}$  cross section (thanks for Philipp Roloff for generating the samples):

- Generator: Physsim
- $\sqrt{s}$  = 1.4 TeV
- Polarisation = (0,0)
- ISR included
- CLIC luminosity spectrum
- 12 samples produced


<sup>\*</sup> Cross section generally decreases as more CP odd Higgs boson presented (with linear fit).








### Cross section to CP-mixing sensitivity





 $\sigma_{fit} = k \sin^2 \phi + C \rightarrow \Delta \sigma = k \Delta \sin^2 \phi$ 

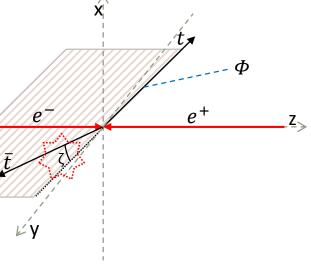
- Apply the top-Yukawa analysis procedure to all samples  $\Rightarrow \Delta \sin^2 \phi = \frac{1}{L} \frac{\Delta \sigma}{\sigma} \sigma$
- Measure  $\Delta \sigma / \sigma$  for all  $\sin^2(\phi)$  values in the semi-leptonic channel
- Extrapolate to result from both channels





### Up-down asymmetry

The up-down asymmetry  $A_\phi$  of an antitop with respect to the top-electron plane is an observable that is sensitive to CP violation.


The angle  $\zeta$  between the antitop and the top-electron plane is given by

$$\sin(\zeta) = \frac{\vec{p}_{\bar{t}}(\vec{q}_{e^-} \times \vec{p}_t)}{|\vec{p}_{\bar{t}}||(\vec{q}_{e^-} \times \vec{p}_t)|}$$

The up-down asymmetry of the  $t \bar t \Phi$  cross section  $\sigma$  is defined as

$$A_{\phi} = \frac{\sigma(\sin \zeta > 0) - \sigma(\sin \zeta < 0)}{\sigma(\sin \zeta > 0) + \sigma(\sin \zeta < 0)}$$

 $\sigma = \sigma(up) + \sigma(down)$  where 'up' ('down') denotes the cross section integrated over  $\zeta \in [0, \pi)$  ( $\zeta \in [\pi, 2\pi)$ ).



Interference between  $t\bar{t}\Phi$  and  $ZZ\Phi$ !

[1] arXiv:1103.5404v1





## $sin(\zeta)$ calculation

Top/anti-top identification (semi-leptonic):

- 1. Find the charge of the identified lepton  $(e^{\pm}, \mu^{\pm}, \tau^{\pm})$ ,
- 2. If charge<0, the leptonic reconstructed (blv) is a top and  $(bq\overline{q})$  is antitop, vice versa.

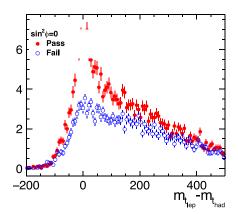
#### Calculation procedure:

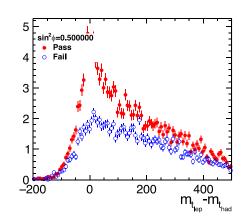
- 1. Obtain the 4-momentum of the reconstructed top and antitop in their rest frames,
- 2. Assume electron 4-momentum  $p_{e^-} = (0.0,7000,7000)$ ,
- 3. Boost  $e^-$ , t and  $\bar{t}$  to  $t\bar{t}\Phi$  rest frame,
- 4. Calculate the vector of electron-top plane,
- 5. Calculate  $\sin \zeta$ .

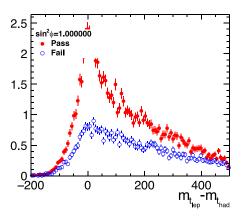
MC: Follows same calculation procedure as above, but use top, anti-top and electron 4-momentum from generator level.






### Cuts investigation


How to cut away mis-identified top?


> Choose suitable cuts by looking at events passing or failing ( $\sin \zeta$  in range -1 to 1):

$$|\sin(\zeta_{rec}) - \sin(\zeta_{mc})| < 0.05$$
:

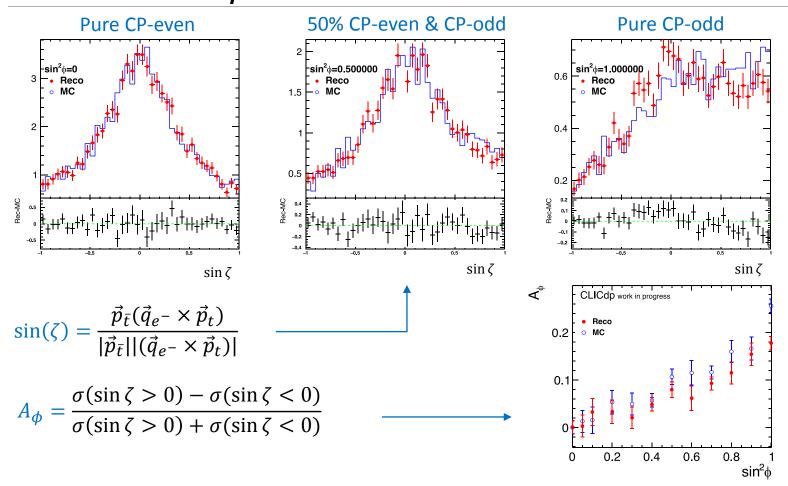
Example:  $m_{t_{lep}} - m_{t_{had}}$  from reconstruction:







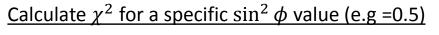
#### Tight cuts:


$$\rightarrow m_{t_l} - m_{t_q} < 100$$

- $\rightarrow$  jetmatch  $\chi^2 < 10$  ( $\chi^2$  used to match jets into t, W and H)
- → remove hadronic taus

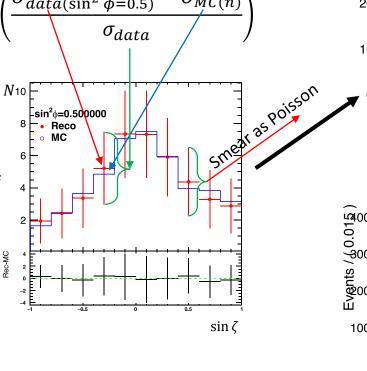


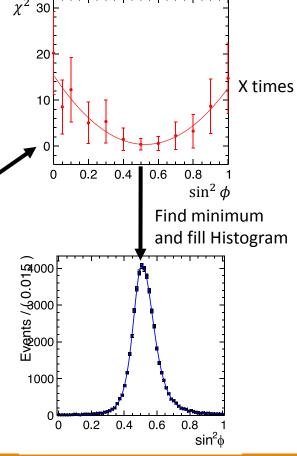



# $\sin \zeta$ and $A_{\phi}$ with tight cuts







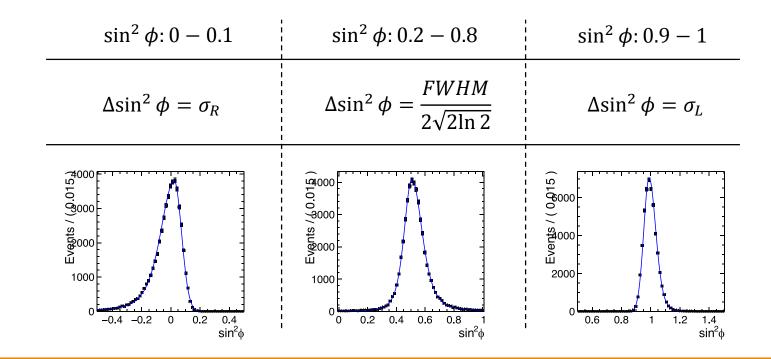


# $\chi^2$ template fitting



$$\chi_n^2(\sin^2\phi = 0.5) = \sum_{i=1}^{nbins} \left(\frac{O_{data(\sin^2\phi = 0.5)} - O_{MC(n)}}{\sigma_{data}}\right)^2$$

- n is the different  $\sin^2 \phi$  samples.
- $O_{MC(n)}$  is the number of events in the same bin of different  $\sin^2 \phi$  samples.

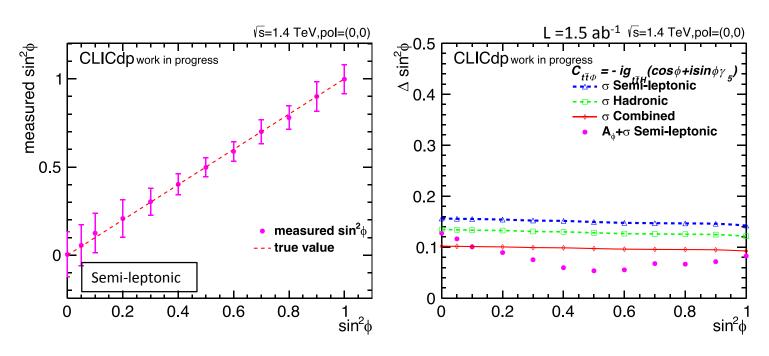






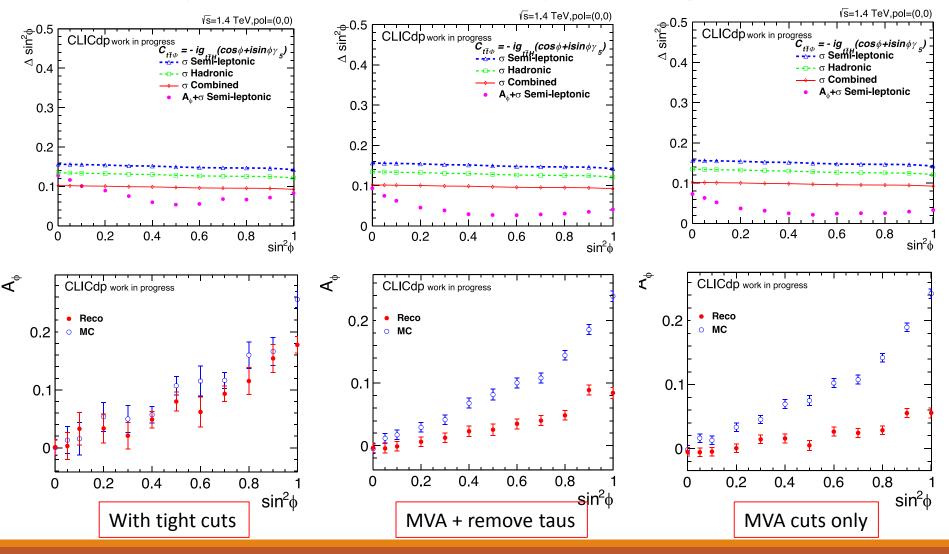



### **Error** estimation

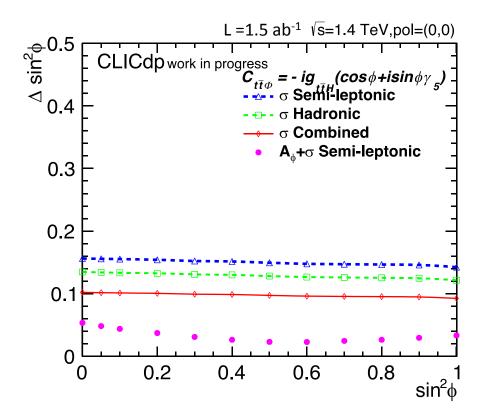

Fitting function: 
$$f(x) = \exp(\frac{-(x-\mu)^2}{g}) \begin{cases} g = 2\sigma_L^2 + \alpha_L(x-\mu)^2, x < \mu \\ g = 2\sigma_R^2 + \alpha_R(x-\mu)^2, x > \mu \end{cases}$$








### Preliminary results (tight cuts)




- Determine  $\sin^2 \phi$  using up-down asymmetry via  $\chi^2$  template fit.
- Then the errors can be extracted to measure sensitivity of CP mixing.
- CP mixing sensitivity improved using up-down asymmetry compared with cross-section alone (in semi-leptonic channel).

### Comparison of results by loosing cuts



### Preliminary results (MVA cuts only)







### Summary

- •This analysis has found  $\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}}=3.8\%$  (unpolarised), 3.3% (polarised) with integrated luminosity of 1.5 ab<sup>-1</sup> at  $\sqrt{s}=1.4$  TeV at CLIC,
  - Previous CLIC analysis found 4.3%, CLICdp-Note-2014-001
  - ILC at 1 TeV found 4.5%, arXiv:1409.7157
  - With luminosity of 2.5ab<sup>-1</sup> and polarised beam,  $\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 2.7\%$
- Updated NLO QCD prediction for translating from cross section to top-Yukawa coupling.
- •Sensitivity to CP violation is determined  $\Delta \sin^2(\phi) \simeq 0.1$  with cross section measurement.
- •An angular distribution using up-down asymmetry has shown an improvement to CP sensitivity  $\Delta \sin^2(\phi) \approx 0.02 \sim 0.05$ , but the method needs to be consolidated.
- Further observables to increase the CP violation sensitivity will be investigated in the future.

# Backup Slides





### Leptons

#### The leptons are searched in two ways:

- Isolated leptons (electron, muon): using IsolatedLeptonFinder
  - Track energy > 15 GeV
  - $d_0, Z_0, R_0 < 0.05 mm$

• 
$$R_{CAL} = \frac{E_{ECAL}}{E_{ECAL} + E_{HCAL}} > 0.9$$
, or  $0.05 < R_{CAL} < 0.3$ 

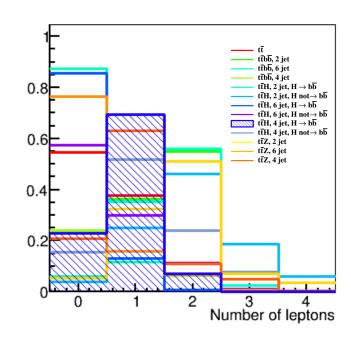
- <u>Tau leptons</u>: using TauFinder
  - $p_T > 2 \text{ GeV/c}$
  - Cone angle > 0.04 rad
  - Seed track  $p_T > 10 \text{ GeV/c}$
  - $0.01mm < R_0 < 0.5mm$
  - Reconstructed  $m_{tau}$  < 1.5 GeV/c<sup>2</sup>
  - 0.04 < Isolation ring < 0.25 rad</li>
- Less than 5 particles in the isolation ring, with total energy < 5 GeV</li>





### Lepton identification

The leptons are searched in two ways:


- Isolated leptons (electron, muon): using IsolatedLeptonFinder
- Tau leptons: using TauFinder

(detailed selection criteria are in backup slide)

retains 87% of truth-matched electrons and muons, 85% of taus that decay from  $W^{\pm}$ ; 0.4% of other reconstructed particles.

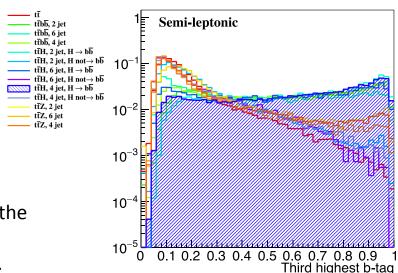
#### Pre-selection:

Selects Hadronic - 86%, Semi-leptonic - 69%.








### Flavour-tagging

LCFIPlus is tuned using  $e^+e^- \rightarrow qqqqqq$  samples with the same flavour for all the quarks.

From the LCFIPlus, we use:

- b-tag and c-tag probability;
- $y_{ij}$  the distance between two closest jets.

\* A bug which influences the performance of the flavour-tagging has been fixed. Retuning the LCFIPlus improves the b-tagging performance.



### Parameters determined

Using the modified Gaussian, the parameters in the Chi-square function can be determined:

$$f = \exp(\frac{-(x-\mu)^2}{g}) \begin{cases} g = 2\sigma_L^2 + \alpha_L(x-\mu)^2, x < \mu \\ g = 2\sigma_R^2 + \alpha_R(x-\mu)^2, x > \mu \end{cases}$$

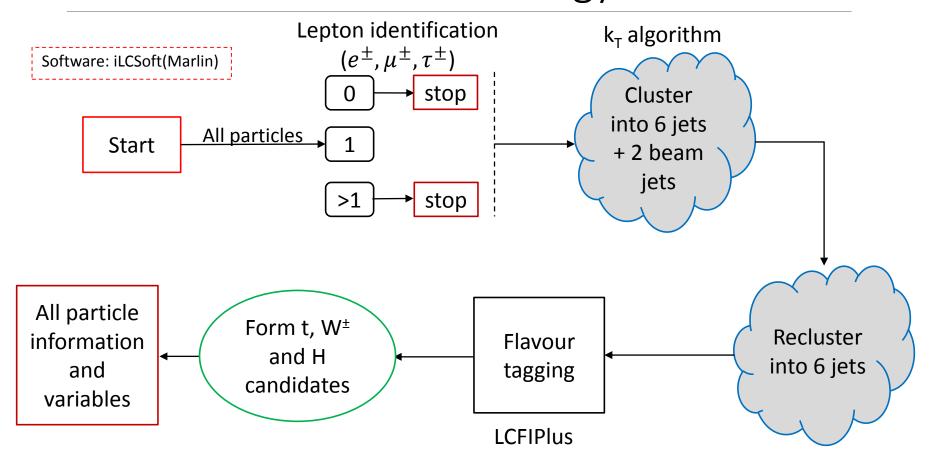
|           | Mass (GeV/c²) | $\sigma_L \ (GeV/c^2)$ | $\sigma_R \ (GeV/c^2)$ |
|-----------|---------------|------------------------|------------------------|
| $W^{\pm}$ | 79.1          | 5.81                   | 6.69                   |
| Тор       | 169.3         | 12.5                   | 12.2                   |
| Higgs     | 121.7         | 13.4                   | 8.00                   |

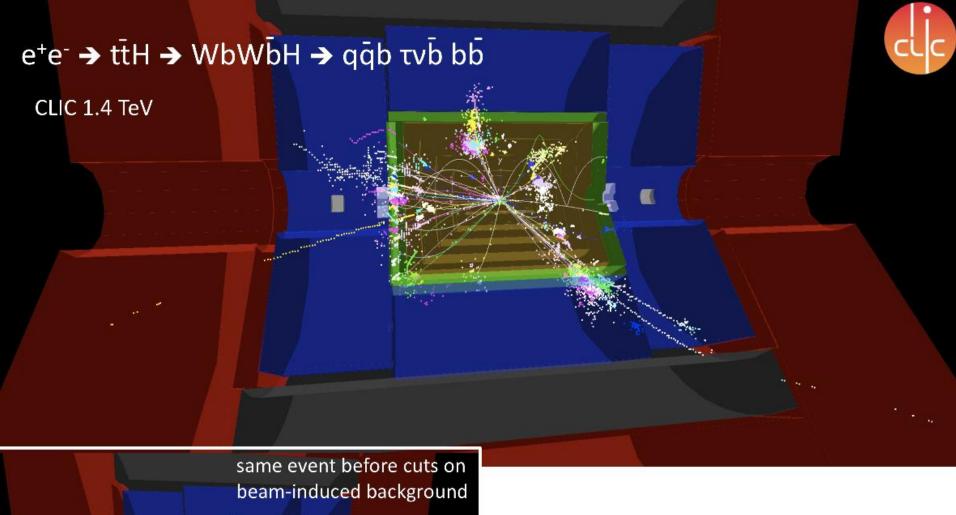
Table 2: Parameters for the invariant mass distribution of the W, top and Higgs candidates, fitted using modified Gaussian, using default background suppression and jet radius 1.0.





### Signal and Background samples


| Process                                                       | Cross-section (fb) | Generator | Expected no. events    |
|---------------------------------------------------------------|--------------------|-----------|------------------------|
| $t\bar{t}H, t\bar{t} \rightarrow 6jets, H \rightarrow bb$     | 0.431              | Physsim   | 647                    |
| $t\bar{t}H, t\bar{t} \rightarrow 4jets, H \rightarrow bb$     | 0.415              | Physsim   | 623                    |
| $t\bar{t}H, t\bar{t} \rightarrow 6jets, H \nrightarrow bb$    | 0.315              | Physsim   | 473                    |
| $t\bar{t}H, t\bar{t} \rightarrow 4jets, H \not\rightarrow bb$ | 0.303              | Physsim   | 455                    |
| $t\bar{t}H, t\bar{t} \rightarrow 2jets, H \rightarrow bb$     | 0.100              | Physsim   | 150                    |
| $t\bar{t}H, t\bar{t} \rightarrow 2jets, H \not\rightarrow bb$ | 0.073              | Physsim   | 110                    |
| $t\bar{t}Z,t\bar{t}	o 6jets$                                  | 1.895              | Physsim   | 2843                   |
| $t\bar{t}Z,t\bar{t}	o 4jets$                                  | 1.825              | Physsim   | 2738                   |
| $t\bar{t}Z,t\bar{t}	o 2jets$                                  | 0.439              | Physsim   | 659                    |
| $t\bar{t}bb, t\bar{t} \rightarrow 6jets$                      | 0.549              | Physsim   | 824                    |
| $t\bar{t}bb$ , $t\bar{t} 	o 4jets$                            | 0.529              | Physsim   | 794                    |
| $t\bar{t}bb$ , $t\bar{t} 	o 2jets$                            | 0.127              | Physsim   | 191                    |
| $tar{t}$                                                      | 135.8              | PYTHIA    | ( 203700 ) Largest bkg |


<sup>\*</sup>Detector: SiD; Polarisation: (0,0)

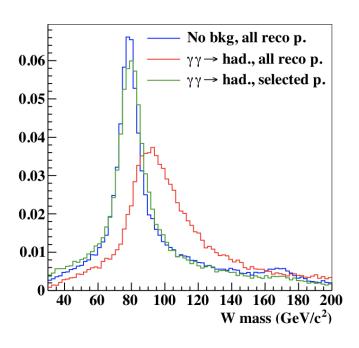





### Event reconstruction strategy





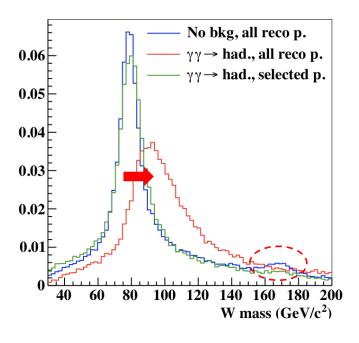



Event display of  $e^+ + e^- \rightarrow t\bar{t}H$ Need to apply timing cut and momentum cut to suppress the  $\gamma\gamma \rightarrow hadrons$  backgrounds.





# $\gamma\gamma \rightarrow hadrons$ backgrounds




At  $\sqrt{s}=1.4$  TeV, ~ 1.3  $\gamma\gamma\to hadrons$  per bunch-crossing.





# $\gamma\gamma \rightarrow hadrons$ backgrounds



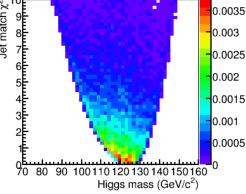
At  $\sqrt{s}=1.4$  TeV,  $\sim 1.3 \ \gamma\gamma \rightarrow hadrons$  per bunch-crossing.

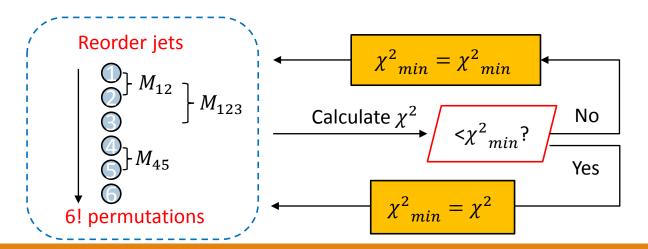
- Tighter background suppression level
- Optimised jet clustering radius





# Top, $W^\pm$ and Higgs Reconstruction


Two <u>chi-squared</u> variables are defined to reconstruct the  $W^{\pm}$ , top and Higgs candidates by combining the jets.


#### Semi-leptonic:

$$\chi_6^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$

#### **Hadronic:**

$$\chi_8^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{456} - M_t)^2}{\sigma_t^2} + \frac{(M_{78} - M_H)^2}{\sigma_H^2}$$

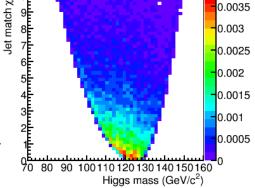




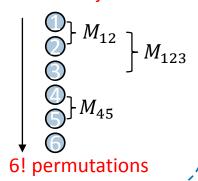


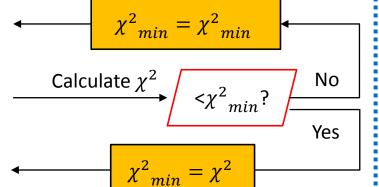


# Top, $W^\pm$ and Higgs Reconstruction


Two <u>chi-squared</u> variables are defined to reconstruct the  $W^{\pm}$ , top and Higgs candidates by combining the jets.

#### Semi-leptonic:


$$\chi_6^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$


#### **Hadronic:**

$$\chi_8^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{456} - M_t)^2}{\sigma_t^2} + \frac{(M_{78} - M_H)^2}{\sigma_H^2}$$



#### Reorder jets





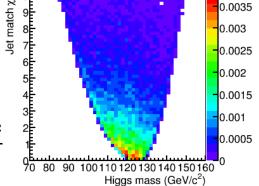
$$q_{W_{had}}q_{W_{had}}b_{t_{had}}b_{H}b_{H}b_{t_{lep}}$$
 $t_{had}$ 

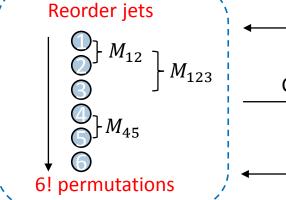
For  $\chi^2 = \chi^2_{min}$ 

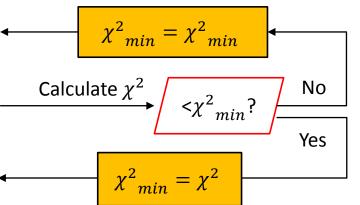


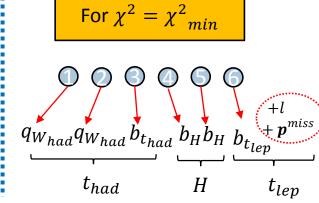


# Top, $W^{\pm}$ and Higgs Reconstruction


Two <u>chi-squared</u> variables are defined to reconstruct the  $W^{\pm}$ , top and Higgs candidates by combining the jets.


#### Semi-leptonic:


$$\chi_6^2 = \frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$

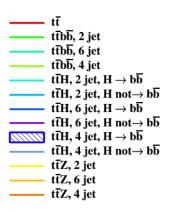

#### **Hadronic:**

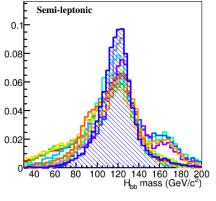
$$\chi_8^2 = \frac{(M_{12} - M_{W^\pm})^2}{\sigma_{W^\pm}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_{W^\pm})^2}{\sigma_{W^\pm}^2} + \frac{(M_{456} - M_t)^2}{\sigma_t^2} + \frac{(M_{78} - M_H)^2}{\sigma_H^2}$$

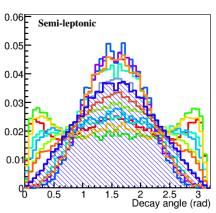


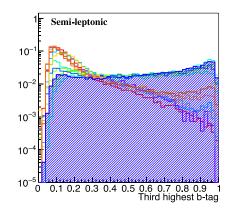


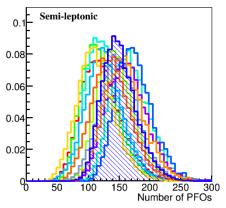




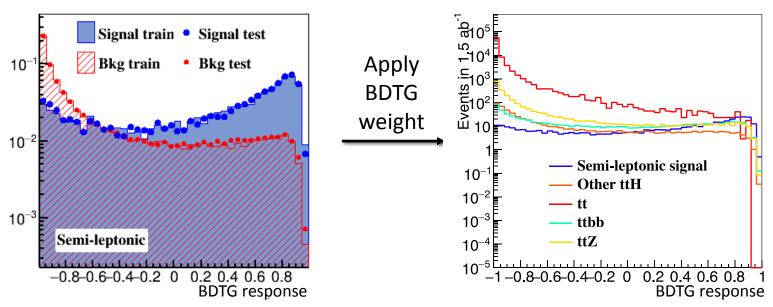


### Event selection using TMVA


Kinematic variables and tagging information are used as input to the TMVA(BDTG) separately for the fully-hadronic (27 variables) and semi-leptonic (23 variables) channels (examples plots see backup slides):









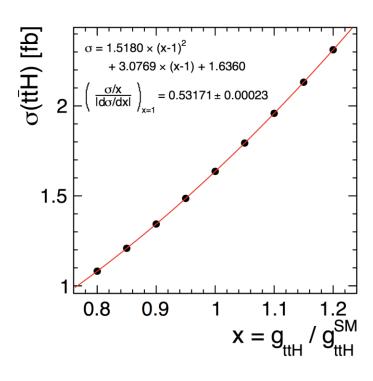







### BDTG(gradient) response




The BDTG response for signal and background samples. Optimise significance (Left): Normalised BDTG response.  $S/\sqrt{S+B}$ 

(Right): Scaled BDTG to number of events expected in 1.5 ab<sup>-1</sup> with new set of samples by using the result from (Left).





### Result on top-Yukawa coupling



To translate the <u>cross-section</u> measurement into <u>top Yukawa coupling</u> at 1.4 TeV, a linear approximation is used (old, using quadratic fit):

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.53 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$





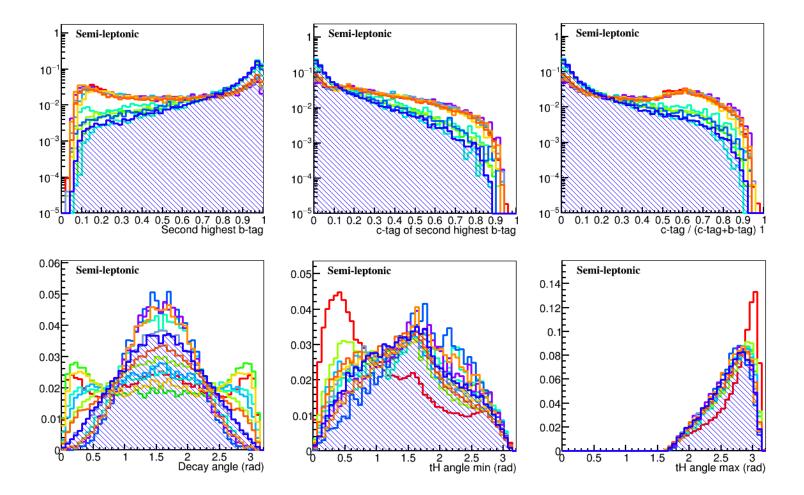
### Event selection using TMVA

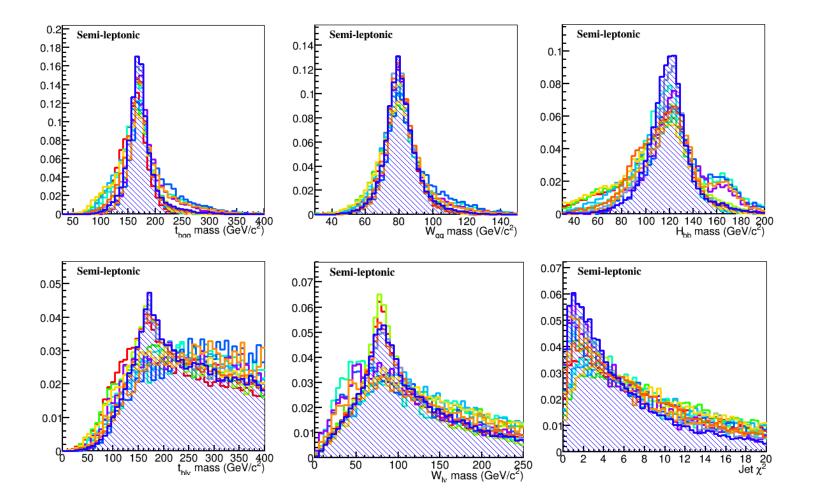
These variables are used as input to the TMVA(BDTG) separately for the full-hadronic and semi-leptonic channels (examples plots see backup slides):

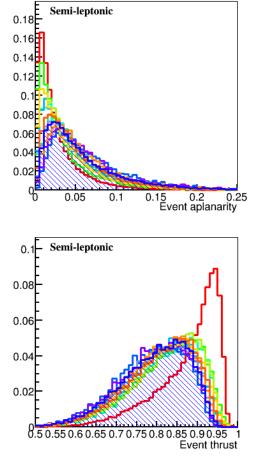
#### For both channel:

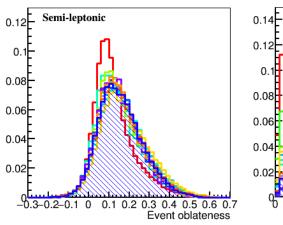
- reconstructed Higgs mass, M<sub>ii</sub>
- number of reconstructed particles
- visible energy in jets
- missing  $p_T$
- $\chi^2$  chi-squared value of the reconstructed jets
- · event shape variables thrust, sphericity and aplanarity
- 4 highest b-tag probabilities and the corresponding ctag
- cosine of decay angle of the  $H o b \bar b$  decay
- cosine of the angles between Higgs and top
- $y_{ij}$ , the values  $y_{45}$ ,  $y_{56}$  and  $y_{67}$

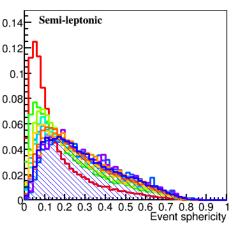
#### For semi-leptonic:


- Cone energy of the isolated lepton
- Ratio of energy deposits in the calorimeter of the isolated lepton
- -> 23 variables


#### For hadronic:


- Energy of the 4 lowest-energy jets
- Cosine of the angle of two closest jets to the beam-axis
- -> 27 variables

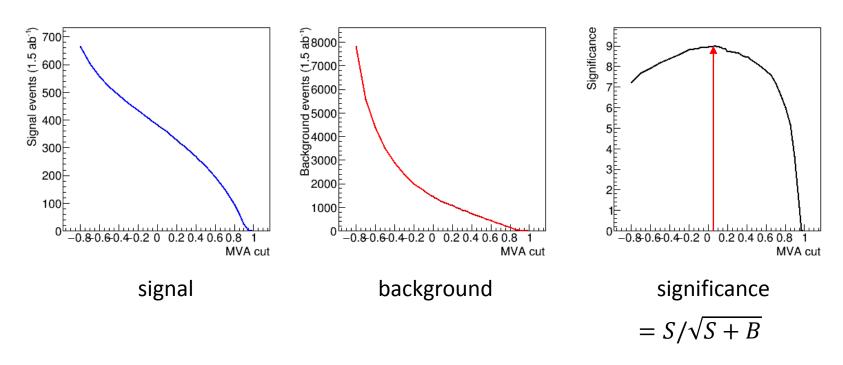

Semi-leptonic Semi-leptonic Semi-leptonic 0.1 10 0.08 10 0.06  $10^{-3}$ 10 0.04 10 0.02 0.005 0.01 0.02 0.025 Lepton D0 IP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Lepton calorimeter sum ratio 100 150 200 250 Lepton cone energy (GeV) Semi-leptonic Semi-leptonic Semi-leptonic 0.07 0.08 0.06 0.08 0.05 0.06 0.04 0.03 0.04 0.02 0.02 0.02 0.0 150 200 250 300 Missing p<sub>T</sub> (GeV/c) 200 250 30 Number of PFOs 50 100 800 1000 1200 1400 Energy in jets (GeV) 150 100 400 600


N.B The results presented here are all for the semi-leptonic signal channel.
















# BDTG cut efficiency & optimal significance



Optimal significance obtained for the semi-leptonic channel.





# CP observables

An observable sensitive to CP violation must be odd under CP transformation. There are couple of variables that we can measure to investigate the CP violation [1]:

- Up-down asymmetry
  - → directly test CP violation
- The polarisation asymmetry of the top quark
  - $\rightarrow$  distinguish between CP even and CP odd Higgs

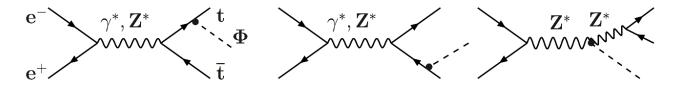
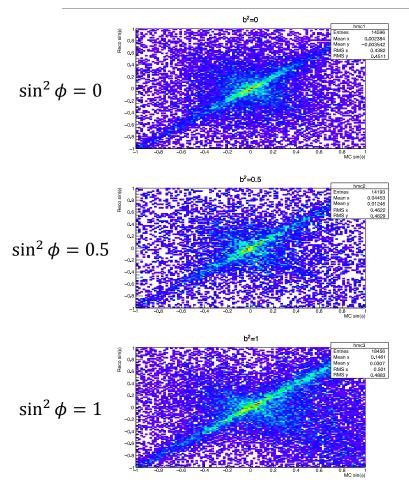




Figure: Feynman diagrams of ttH production.

[1] Reference: R.M. Godbole, C. Hangst, M. Mu hlleitner, S.D. Rindani and P. Sharma, "Model-independent analysis of Higgs spin and CP properties in the process  $e^+e^- \rightarrow tt\Phi$ ", arXiv:1103.5404v1 [hep-ph] 28 Mar 2011



# MC vs Rec (investigation)



Correlation of  $\sin\theta_{\phi}$  between MC and Rec:

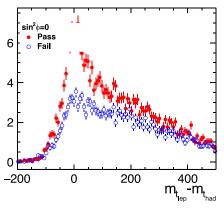
- A lot of background
- Opposite diagonal line
  - > Mis-identification of top

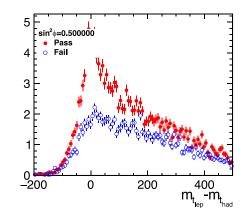
How to cut away mis-identified top?

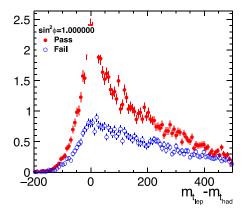
Choose suitable cuts by looking at events passing or failing:

$$\left|\sin(\theta_{\phi_{rec}}) - \sin(\theta_{\phi_{mc}})\right| < 0.05$$
:







#### Cuts investigation


How to cut away mis-identified top?

Choose suitable cuts by looking at events passing or failing:

$$\left|\sin(\theta_{\phi_{rec}}) - \sin(\theta_{\phi_{mc}})\right| < 0.05:$$
  $m_{t_{lep}} - m_{t_{had}}$  from reconstruction:







$$\rightarrow m_{t_l} - m_{t_q} < 100$$

$$\rightarrow$$
 jetmatch  $\chi^2 < 10$ 





# $\chi^2$ template fitting

- 1. Errors in each bin are calculated as  $\sqrt{N}$
- 2. Calculate  $\chi^2$  for a specific  $\sin^2 \phi$  value (e.g =0.5),
- 3. Calculate  $\chi^2$  for all other  $\sin^2 \phi$  values with  $\sin^2 \phi = 0.5$  as data, and fit the  $\chi^2$  curve using  $y = a + bx + cx^2$ . Obtain the minimum point as the measurement for  $\sin^2 \phi$ ,
- 4. Smear data point by assuming Gaussian distribution and draw/fit the  $\chi^2$  curve,
- 5. Obtain the minimum point from fitted  $\chi^2$  curve and fill a  $\sin^2 \phi$  histogram. Fit the histogram to obtain mean and standard deviation.
- 6. Repeat procedure 1-5 for other  $\sin^2 \phi$  values.



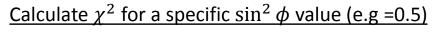


# $\sin( heta_\phi)$ calculation

Top/anti-top identification (semi-leptonic):

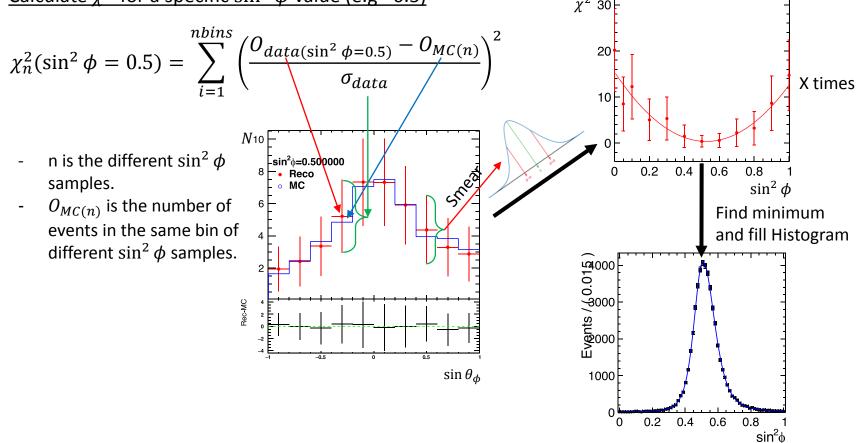
- 1. Find the charge of the identified lepton  $(e^{\pm}, \mu^{\pm}, \tau^{\pm})$ ,
- 2. If charge<0, the leptonic reconstructed  $t/\bar{t}(blnu)$  is a top and  $t/\bar{t}(bqq)$  is antitop, vice versa.

#### Calculation procedure:


- 1. Obtain the 4-momentum of the reconstructed top and antitop in their rest frames,
- 2. Assume electron 4-momentum  $p_{e^-} = (0.0,7000,7000)$ ,
- 3. Boost  $e^-$ , t and  $\bar{t}$  to  $t\bar{t}\Phi$  rest frame,
- 4. Calculate the vector of electron-top plane,
- 5. Calculate  $\sin \theta_{\phi}$ .

MC: Follows same calculation procedure as above, but use top, anti-top and electron 4-momentum from generator level.



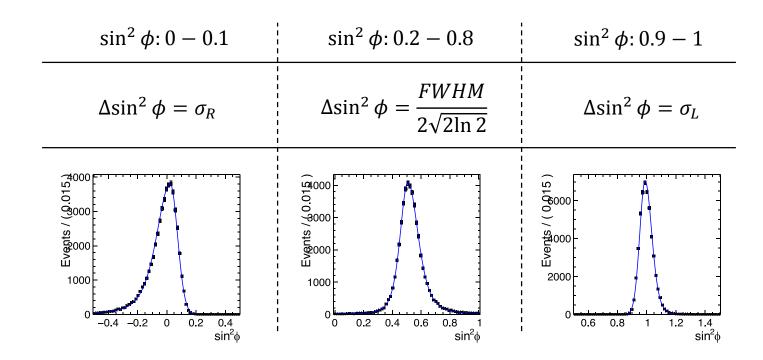



# $\chi^2$ template fitting



$$\chi_n^2(\sin^2\phi = 0.5) = \sum_{i=1}^{nbins}$$

- n is the different  $\sin^2 \phi$ samples.
- $O_{MC(n)}$  is the number of events in the same bin of different  $\sin^2 \phi$  samples.








#### **Error** estimation

Fitting function: 
$$f(x) = \exp(\frac{-(x-\mu)^2}{g}) \begin{cases} g = 2\sigma_L^2 + \alpha_L(x-\mu)^2, x < \mu \\ g = 2\sigma_R^2 + \alpha_R(x-\mu)^2, x > \mu \end{cases}$$







### The top polarisation asymmetry

The angular distribution in the decay  $t \rightarrow bW \rightarrow blv$  is not affected by any non-standard effects in the decay vertex, so it is a another observable in probing the Higgs CP properties.

The polarisation asymmetry is given by

$$P_t = \frac{N(t_L) - N(t_R)}{N(t_L) + N(t_R)}$$

Where  $t_{L,R}$  denotes a left/right-handed top.

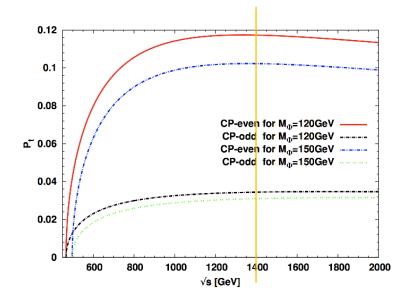



Figure: The top polarisation asymmetry for various Higgs models with unpolarised e<sup>±</sup> beams [1].