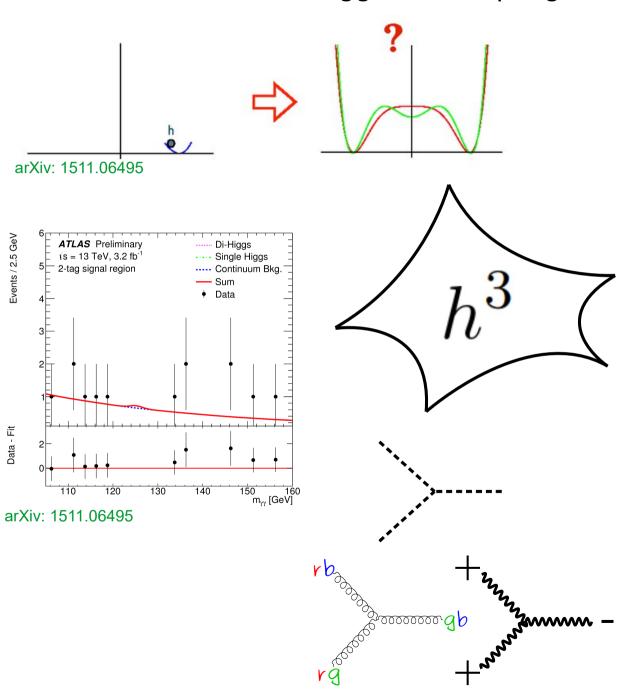
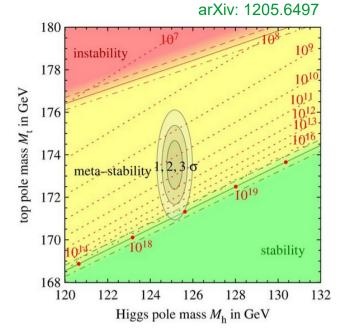
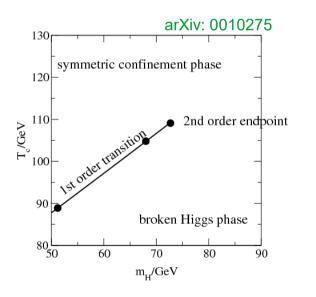
Global view on the Higgs self-coupling

CLIC meeting


Marc Riembau


with


S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, T. Vantalon

- Structure of the contribution:
 - -Discussion of the different ways to probe the trilinear, above and below HH threshold
 - -Results of the run below threshold, emphasis on a global analysis
 - -Impact of opening the double Higgs production
 - -Presentation of the global fit

The relevance of the Higgs self-coupling

Global fit

$$\mathcal{L} \supset \frac{h}{v} \left[\delta c_w \frac{g^2 v^2}{2} W_{\mu}^+ W^{-\mu} + \delta c_z \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z^{\mu} \right. \\ + c_{ww} \frac{g^2}{2} W_{\mu\nu}^+ W^{-\mu\nu} + c_{w\square} g^2 \left(W_{\mu}^- \partial_{\nu} W^{+\mu\nu} + \text{h.c.} \right) + \left(\hat{c}_{\gamma\gamma} \frac{e^2}{4\pi^2} A_{\mu\nu} A^{\mu\nu} \right. \\ + \left(c_{zz} \right)^2 + \frac{g'^2}{4} Z_{\mu\nu} Z^{\mu\nu} + \left(\hat{c}_{z\gamma} \right)^2 \frac{e^2}{2\pi^2} Z_{\mu\nu} A^{\mu\nu} + \left(c_{z\square} \right)^2 Z_{\mu} \partial_{\nu} Z^{\mu\nu} + c_{\gamma\square} g g' Z_{\mu} \partial_{\nu} A^{\mu\nu} \right] \\ + \left. \frac{g_s^2}{48\pi^2} \left(\hat{c}_{gg} \frac{h}{v} + \hat{c}_{gg}^{(2)} \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu} - \sum_f \left[m_f \left(\delta y_f \frac{h}{v} + \delta y_f^{(2)} \frac{h^2}{2v^2} \right) \bar{f}_R f_L + \text{h.c.} \right] \\ - \left((\kappa_{\lambda}) - 1 \right) \lambda_3^{SM} v h^3 ,$$

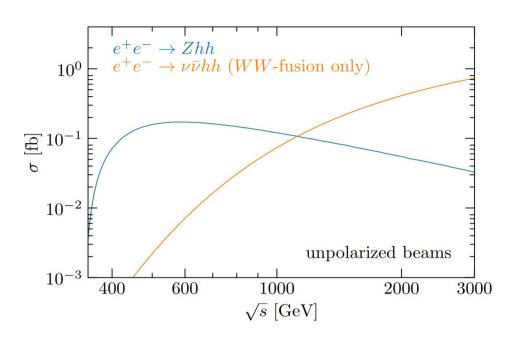
7+2+1 independent parameters: δc_z , c_{zz} , c_{zz} , $\hat{c}_{z\gamma}$, $\hat{c}_{\gamma\gamma}$, \hat{c}_{gg} , δy_t , δy_b , δy_τ , κ_λ .

$$\begin{split} \delta c_w &= \delta c_z \,, \\ c_{ww} &= c_{zz} + 2 \frac{g'^2}{\pi^2 (g^2 + g'^2)} \hat{c}_{z\gamma} + \frac{g'^4}{\pi^2 (g^2 + g'^2)^2} \hat{c}_{\gamma\gamma} \,, \\ c_{w\Box} &= \frac{1}{g^2 - g'^2} \Big[g^2 c_{z\Box} + g'^2 c_{zz} - e^2 \frac{g'^2}{\pi^2 (g^2 + g'^2)} \hat{c}_{\gamma\gamma} - (g^2 - g'^2) \frac{g'^2}{\pi^2 (g^2 + g'^2)} \hat{c}_{z\gamma} \Big] \,, \\ c_{\gamma\Box} &= \frac{1}{g^2 - g'^2} \Big[2g^2 c_{z\Box} + \left(g^2 + g'^2 \right) c_{zz} - \frac{e^2}{\pi^2} \hat{c}_{\gamma\gamma} - \frac{g^2 - g'^2}{\pi^2} \hat{c}_{z\gamma} \Big] \,, \\ \hat{c}_{gg}^{(2)} &= \hat{c}_{gg} \,, \\ \delta y_f^{(2)} &= 3 \delta y_f - \delta c_z \,. \end{split}$$

$$\delta g_{1,z} = \frac{g'^2}{2(g^2 - g'^2)} \left[\hat{c}_{\gamma\gamma} \frac{e^2}{\pi^2} + \hat{c}_{z\gamma} \frac{g^2 - g'^2}{\pi^2} - c_{zz} \left(g^2 + g'^2 \right) - c_{z\Box} \frac{g^2}{g'^2} \left(g^2 + g'^2 \right) \right],$$

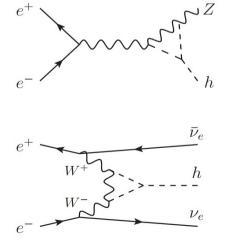
$$\delta \kappa_{\gamma} = -\frac{g^2}{2(g^2 + g'^2)} \left[\hat{c}_{\gamma\gamma} \frac{e^2}{\pi^2} + \hat{c}_{z\gamma} \frac{g^2 - g'^2}{\pi^2} - c_{zz} (g^2 + g'^2) \right],$$

measured in diboson

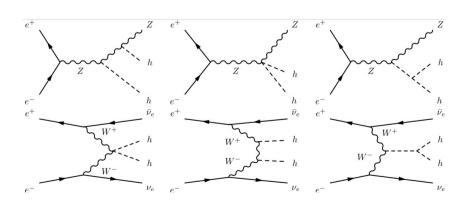

relations at dimension 6

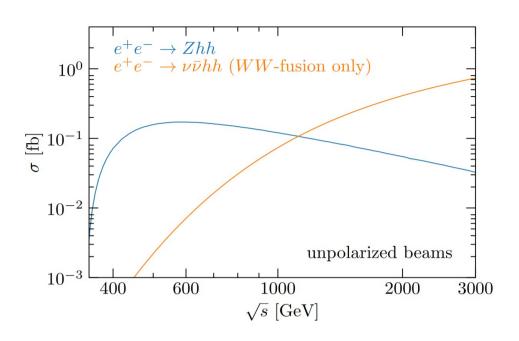
Analysis

We include in the fit

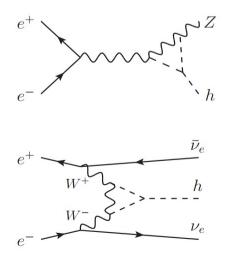

- Higgstrahlung production Zh
- Higgs production through WW fusion
- Higgs decays to: ZZ, WW, xx, Zx, gg, bb, cc, TT, µµ
- Weak boson pair production
- Double Higgstrahlung Zhh
- Weak boson fusion to HH

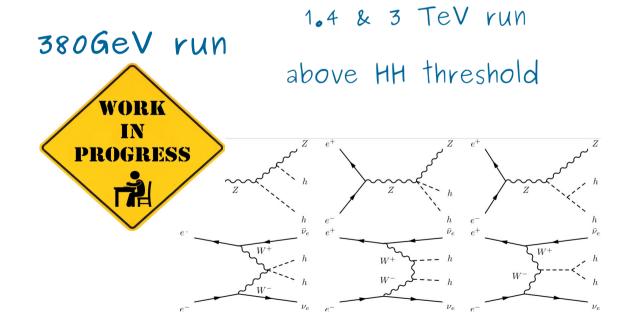
CLIC specifications from previous study: 1608.07538
350GeV(0.5/ab), 1.4TeV (1.5/ab), 3TeV (2/ab)

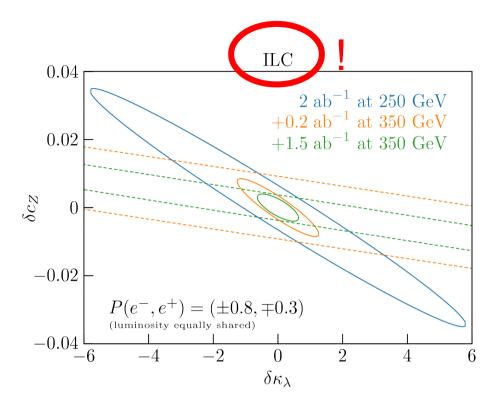



350GeV run

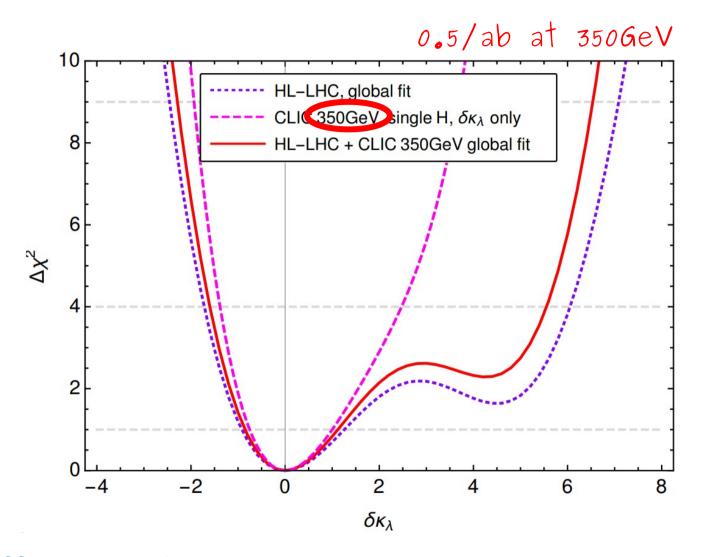
below HH threshold



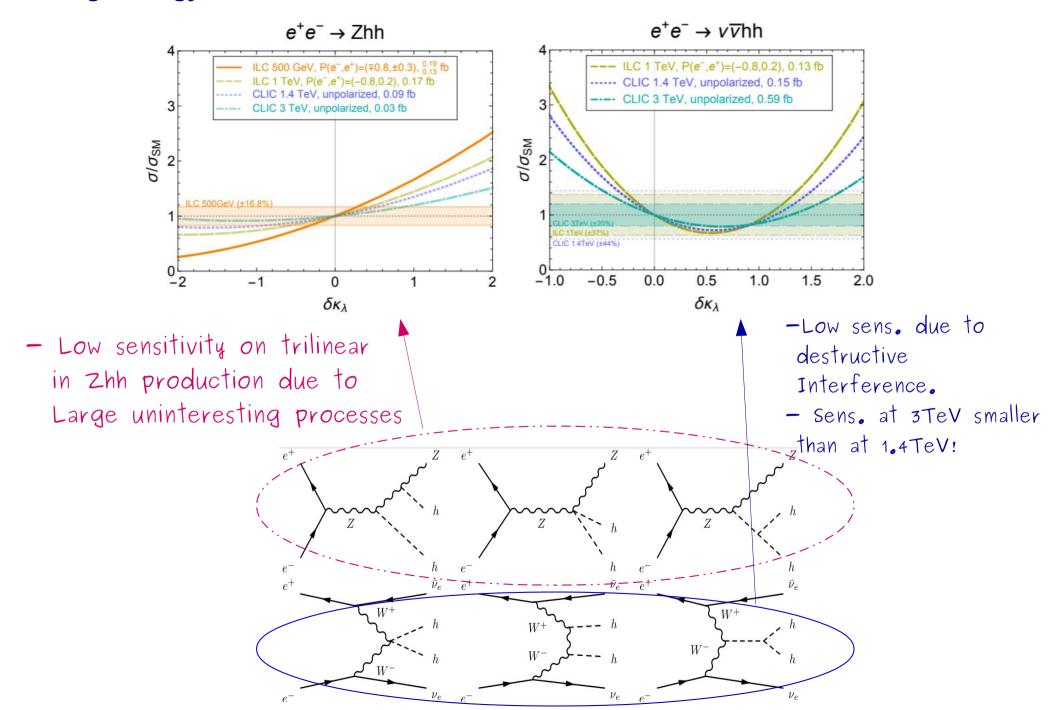

1.4 & 3 TeV run
above HH threshold



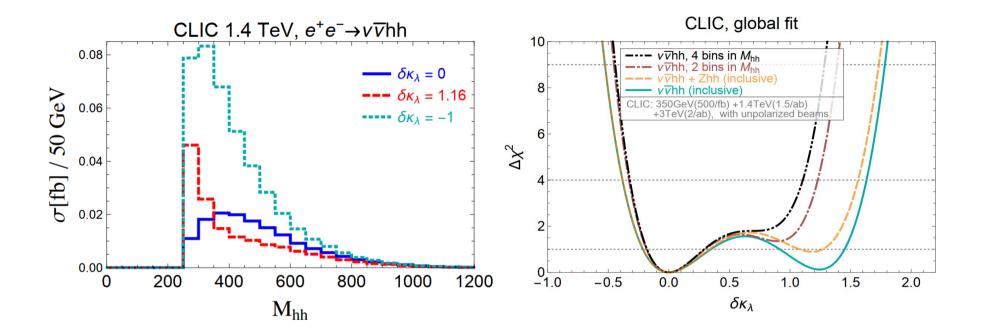
350GeV run below HH threshold



A low energy run

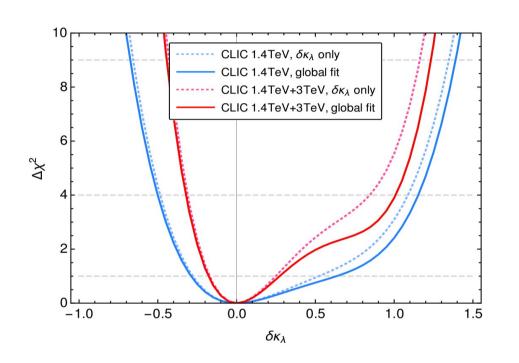

- Large degeneracy with a single run
- Loops of Higgses deform the spectrum in a nontrivial way as the momentum transfer crosses different thresholds.

A low energy run



- Loop effects in single Higgs production better than HL-LHC, in exclusive fit
- Flat directions worsen constraints if a global fit is considered

High energy run



High energy run

- High sensitivity on trilinear on the spectrum near threshold
- (simple) differential information resolves degenerate minima

Global fit

	$\Delta \chi^2 = 1$	$\Delta \chi^2 = 4$
1.4 TeV, exclusive	[-0.29, 0.52]	[-0.49, 1.09]
1.4 TeV, global	[-0.29, 0.63]	[-0.50, 1.15]
$1.4 + 3 \mathrm{TeV}$, exclusive	[-0.18, 0.24]	[-0.31, 0.84]
$1.4 + 3 \mathrm{TeV}, \mathrm{global}$	[-0.18, 0.27]	[-0.32, 1.01]

- 1.4 TeV fit dominated by (differential) VFB. Single Higgs observables strong enough to close any flat direction.
- 3TeV does not help much: decrease in cross section and sensitivity. Limiting factor is precision on single Higgs couplings.

To be done:

- Luminosities to be changed to

380GeV(1/ab), 1.5TeV (2/ab), 3TeV (5/ab)

The 380GeV run might imply qualitative changes, yet to be studied.