

Higgs self-coupling in double Higgs production at 3 TeV

Ulrike Schnoor

28 August 2018 CLICdp collaboration meeting

Introduction

Goal Full simulation study of double Higgs production at CLIC

- determine prospects for the measurement of the triple Higgs self-coupling and quartic HHWW coupling
- provide input for more global EFT study

Basis Building on previous work in the collaboration (Rosa Simoniello, Boruo Xu)

- 2017 Higgs paper: Precision of double Higgs production cross-section measurement and resulting expected limits on trilinear Higgs self-coupling
- Analysis selection for bbbb and bbWW final state
- Defined limit setting procedure
- **NEW** > Updated background estimates
 - New BDT trained (Rosa)
 - Refined template fit procedure
 - Pseudo-experiments for g_{HHH}-only limits
 - $\Delta \chi^2$ from template fit for g_{HHH} vs. g_{HHWW} limits extraction
 - Update to $\mathcal{L} = 5000 \, \text{fb}^{-1}$ and 80 % e^{-1} polarisation

Higgs self-coupling

 $\mathsf{Self}\mathsf{-}\mathsf{couplings} \rightsquigarrow \mathsf{shape} \mathsf{ of the Higgs potential}$

SM Higgs mechanism:

- $\blacktriangleright V = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
- μ, λ related to the Higgs mass

Beyond SM:

• $\lambda \neq \lambda_{SM}$ measured as effective coupling

Higgs self-coupling at CLIC

- Measure HH production at 3 TeV in VBF
- Small contribution from ZHH, $\nu \bar{\nu} HH$ at 1.5 TeV
- Higher-order effects in single H production and decay

Higgs self-coupling in VBF at CLIC

- ► Effectively measure the value of the Higgs trilinear self-coupling by modifying the HHH vertex
- ► Simultaneously vary the quartic Higgs-W coupling *g*_{HHWW} as this vertex contributes as well:

- Modified $HH \rightarrow bbbb$ production could be due to:
 - non-SM Hbb coupling
 - non-SM single H production
 - \Rightarrow global analysis taking into account other Higgs measurements; use EFT
- Using differential distributions enhances the discrimination power between modification of the Higgs self-coupling and other non-SM contributions

HH production on the bbbb final state: dominant channel by far

Vetoes

- Exclude events containing isolated leptons or hadronic taus
- Require events to pass exclusive jet clustering with N=4

Preselection

- bbbb/bbWW orthogonality cuts:
 - ▶ bbbb candidates: $\sum_{b \in a} b = 2.3$ and $-\log(y_{34}) \ge 3.7(3.6)$ at 1.4 TeV (3 TeV) where log is the natural logarithm \log_e
 - bbWW candidates: all else

BDT in bbbb

- Optimal cut on BDT score for the signal extraction: BDT > 0.1276 (0.1184) used in the Higgs paper (with new BDT)
- BDT > 0.05 for the template fit

Event yields for $HH \rightarrow bbbb$ cross-section measurement

- Use $\mathcal{L} = 2000 \text{ fb}^{-1}$ (as in the Higgs paper), using the respective optimal BDT score cuts
- Newly trained BDT ("BDT2018") with corrected background normalization

Process	N_{BDT} paper	N_{BDT} 2018
$HH \rightarrow all$	61 + 1	67.520
ee→qqqq	3	3.577
ee→qqqqvv	17	24.293
ee→qqqqlv	6	6.155
ee→qqHvv	50	47.085
egam \rightarrow vqqqq	11	13.924
$egam{\rightarrow}qqHv$	9	5.695
s/\sqrt{b}	6.3	6.7
$s/\sqrt{s+b}$	4.9	5.2

CLIC Higgs paper: Eur. Phys. J. C 77, 475 (2017)

Comparison to results in Higgs paper

- Significance is slightly higher than in the paper
- Compare cross section precisions to the Higgs paper (for $\mathcal{L}=2000 \text{ fb}^{-1}$):

• Higgs paper
$$\frac{\sqrt{S+B}}{S} = 20.3\%$$

• BDT2018
$$\frac{\sqrt{S+B}}{S} = 19.2.\%$$

Limits on trilinear Higgs self-coupling from cross-section

Precision of cross-section measurement for different scenarios:

$\mathcal{L}_{ ext{tot}}$	$2{\rm ab}^{-1}$	$5 \mathrm{ab}^{-1}$
no polarization $p(e^-)=-80\%$	19.2. % 14.3 %	12.2 % 9.1 %
mixed		10.0 %

• Mixed:
$$1 ab^{-1}$$
: +80 % \oplus $4 ab^{-1}$: -80 %

 For polarised e⁻ beams, assume same enhancement factor for background as signal (slightly overestimating)

with $\kappa = 1.47$ at 3 TeV: \Rightarrow for 5 ab⁻¹, mixed polarisation scenario:

$$\Delta g_{HHH}/g_{HHH} = 14.7$$
 %

Limits derived from cross-section precision

Kinematics of double Higgs production

BDT input variables

- ► Flavor tagging information (*b*, *c*)
- Jet pair invariant masses and angles

- Invariant mass of the system
- ► etc.

Couplings dependent behaviour: total cross section

- ▶ For the measurement, make use of change in production according to the values of the couplings
- Dependence on the couplings:

Kinematic properties of non-SM Higgs self-coupling

- \blacktriangleright g_{HHWW}=0 for all samples
- Shapes sensitive to coupling http://arxiv.org/abs/1309.7038
- \blacktriangleright M_{HH} shows stronger shape-dependence than BDT
- Distinction between points with similar cross-section. but $g_{
 m HHH} > 1$ vs. $g_{
 m HHH} < 1$ (example: $g_{\rm HHH} = 0.9$ vs. $g_{\rm HHH} = 1.2$)

0.2

= 1.0

= 1.0

= 1.0

= 1.0

BDT response

For the 1D fit, $g_{HHWW} = g_{HHWW}^{SM}$ is assumed and a measurement of g_{HHH} is performed: 1 d.o.f. For the 2D fit, both g_{HHWW} and g_{HHH} are varied: 2 d.o.f.

- 1. Procedure to measure gHHH from the "data": template fit with χ^2 minimization
 - Calculate χ^2 from the binned distributions for each coupling

$$\chi^2 = \sum_{i} \frac{(N_i^{(exp)} - N_i^{(obs)})^2}{N_i^{(exp)}}$$

- Minimum is estimate for gHHH
- 1σ limits determined from $\Delta\chi^2 = 1(2.3)$ for 1 (2) d.o.f.
- However, this is sensitive to fluctuations in the samples as the SM point is artificially fixed at $\chi^2 = 0$ (\rightarrow outlier from parabola)

- \Rightarrow In the g_{HHH} -only (1D) fit, the confidence interval is estimated from pseudo-experiments
- $\Rightarrow\,$ In the g_{HHWW} vs. g_{HHH} (2D) fit, limits are obtained from $\Delta\chi^2$

Ulrike Schnoor

Template fit method and estimation of limits, continued

- 2. Confidence interval corresponding to the Gaussian standard deviation of the measured g_{HHH} values from pseudo-experiments
 - Generate pseudo-experiments randomly from the sensitive distribution
 - \blacktriangleright Calculate χ^2 with the "observed" number of events from the pseudo-experiment
 - If the distribution of g_{HHH} from pseudo-experiments is Gaussian, its standard deviation σ corresponds to the confidence interval at 68 % C.L.

Second minimum in χ^2

Behavior explained by cross-section dependence on g_{HHH}

- Kinematic properties help distinguish $g_{\rm HHH} > 1$ vs. $g_{\rm HHH} < 1$
- ► Additionally include double Higgs-Strahlung at 1.5 TeV → to be included in the current fit

JHEP 1802 (2018) 178

Comparing direct $\Delta \chi^2$ limits and those from toys

Best fit: $g_{\rm HHH} = 1.023$ Limits from $\Delta \chi^2 = 1$: [0.943, 1.115] (68 % C.L.)

 $\begin{array}{l} \mbox{2-sided Gaussian with $\mu=0.977$;} \\ \sigma_{\rm left}=0.065, \ \sigma_{\rm right}=0.125 \\ \mbox{Limits from toys: [0.935, 1.125] (68 \% \mbox{ C.L.})} \end{array}$

Both methods yield asymmetric limits; agreement between methods

Optimization

⁽not the full statistics)

BDT score \rightarrow tighter constraints on g_{HHWW}

- $M(HH) \rightarrow tighter constraints on g_{HHH}$

 - Best observable based on BDT vs. M(HH)

Preliminary results

Expected 68 % C.L. limits [0.935, 1.125]

$g_{\rm HHH}$ vs. $g_{\rm HHWW}$

 $\Delta\chi^2 = 2.3$ contour corresponds to 68 % C.L. limits

▶ Electron beam polarization enhances the signal cross section: for $p(e^-) = -80$ % the cross section is enhanced by a factor of 1.8

luminosity $[{\rm fb}^{-1}]$	e^- polarisation	$g_{HHH}/g_{HHH}^{ m SM}$ limits
3000	0	[0.915, 1.252]
3000	-80 %	[0.922, 1.168]
5000	0	[0.915, 1.196]
5000	-80 %	[0.935, 1.125]

- ▶ Lower limit below 10 % for all cases
- ▶ Upper limit reaches 12 % only for full statistics and polarization
- Illustrates impact of polarization

Conclusions and Outlook

- Limit setting procedure for g_{HHH} only as well as g_{HHH} vs. g_{WWHH} defined and optimized
- ▶ Preliminary 68 % C.L. limits for g_{HHH} -only: [0.935, 1.125] with full statistics and polarization
- Next steps:
 - ► Estimate of other contributions (HH → bbWW at 3 TeV; HH at 1.5 TeV; higher-order contributions in single H production at 1.5 TeV stage)
 - Provide statistical uncertainties for differential cross-section measurement in M(HH)
 - Description within global EFT fit

Additional Material

BDT vs M(HH)

Better limits for M(HH) than for the BDT distribution can be explained by comparing the bin-wise ratios to the SM of some exemplary samples:

- \blacktriangleright In the M(HH) distribution the differences are larger, mainly thanks to the last bin
- Without the last bin the values of the ratio are similar to the BDT
- ► Ratios of g_{HHH} = 1, g_{HHWW} = 1.15 and g_{HHH} = 1.2, g_{HHWW} = 1 are closer to SM and flatter for the BDT → BDT less sensitive in this direction

Finding a good fit function a.k.a. estimator for gHHH

- Behavior not truly symmetric
- Does not describe full fit range
- Highly fit-range dependent
- Second minimum found sometimes

- Does not describe the full range \rightarrow sensitive to fluctuations
- Pushes minimum lower
- Second minimum found sometimes

- 4th order Polynomial ⁵ ≈ 80 50 40 40 40 40 0 0 10 0 8.5 1 1.5 2 2.5 9_{HHH}
 - ✓ Describes full range✓ Finds correct minimum

Best solution: \rightarrow fit with a 4th order polynomial and estimate g_{HHH} from the left minimum