

Design and characterisation of HV/HR-CMOS sensor chips for the CLIC vertex and tracking detectors

Iraklis Kremastiotis (CERN, Karlsruhe Institute of Technology)

CLIC Detector and Physics Collaboration Meeting CERN, 28-29 August 2018

Part I:

Characterisation of capacitively coupled assemblies for the CLIC vertex detector

Introduction to capacitively coupled pixel detectors

- High-Voltage (HV) CMOS sensors:
 - All electronics are placed in a deep N-well, which is also the collecting electrode
 - Due to the reverse applied high-voltage bias, a depletion region with a depth of $\sim\!10~\mu m$ is created under the collection electrode, which leads to fast signal collection through drift
- Capacitively coupled pixel detectors:
 - A thin layer of glue is applied between the sensor and the readout chip
 - The charge collected in the HV-CMOS pixel is amplified by an on-pixel Charge Sensitive Amplifier (CSA) and then transferred to the readout chip

- Two chips have been designed in the framework of the CLIC vertex detector studies
 - The CLICpix2 readout chip [1] (65 nm CMOS process)
 - Simultaneous time (8-bit ToA) and energy (5-bit ToT) measurements, 10 ns time tagging
 - The C3PD HV-CMOS sensor chip [2], (180 nm HV-CMOS process)
 - Produced on wafers with 20, 200 and 1000 Ωcm resistivity for the substrate
 - Both chips feature matrices with 128×128 square pixels, with $25 \,\mu m$ pitch
 - Successors of a 1st generation of chips that have been tested in capacitively coupled assemblies [3]

[3] CLICdp-Pub-2015-003 (N. Alipour Tehrani et al.): https://doi.org/10.1016/j.nima.2016.03.072

^[2] CLICDP-PUB-2017-001 (I. Kremastiotis et al.): https://arxiv.org/pdf/1706.04470.pdf

Capacitively coupled assemblies

- Capacitively coupled assemblies with the C3PD HV-CMOS sensor glued on the CLICpix2 readout chip have been produced at Geneva University with an SET Accura 100 flip-chip machine
- The C3PD sensor chip has been produced in wafers with different values for the substrate resistivity
 - Standard resistivity (20 Ωcm):
 - First (laboratory and/or beam) tests performed with assemblies with the standard substrate resistivity for C3PD
 - Higher resistivity:
 - 1 kΩcm: Two assemblies with 1 kΩcm C3PD chips have been produced and tested in the laboratory.
 Assembly #10 tested in beam → analysis in progress
 - 200 Ωcm: C3PD samples from a 200 Ωcm wafer have been received.
 First assembly is produced → testing in progress
 - The collected signal is expected to be larger for higher substrate resistivity [4]
- Laboratory and test-beam measurements of capacitively coupled assemblies were performed using the CaRIBOu data acquisition system:

https://gitlab.cern.ch/Caribou

Photo: M. Vicente

Simulated collected charge for different values for the substrate resistivity [4]

Coupling capacitance

- Test pulse injection in C3PD. Readout from CLICpix2
- Variations in response across the matrix have been observed in some assemblies
 - · Non-uniform glue deposition, flip-chip misalignment

Assemblies with 200 Ωcm C3PD chips

- Low yield has been observed for the assemblies with the C3PD chips from the 200 Ω cm wafer
 - Low statistics: 1 out of 4 produced assemblies is functional
 - Short from power to ground, problems in powering observed for other assemblies as well as for bare C3PD chips from the same wafer
 - No similar issues have been observed for the first C3PD production, with the standard substrate resistivity (20 Ω cm)

- Preliminary results are available for the functional assembly (Assembly #17)
 - Test pulse injection in a single pixel in CLICpix2 (left) and C3PD (right)
 - For large signals, the ToT counter saturates

Measurements on coupling (glue) capacitance

- Following destructive cross-section measurements on two mechanical samples, the pad-to-pad distance is ~3 μm, largely dominated by passivation layers
- The simulated value of the glue capacitance is ~3.5 fF [5]
- A "special" C3PD pixel where the injected test pulse signal is connected directly to the coupling pad, was used to measure the coupling capacitance between the two chips
- Using the design value for the CLICpix2 test pulse injection capacitance ($C_{test} = 10 \ fF$), the coupling capacitance (C_{glue}) can be estimated:

Assembly #	C3PD Substrate Resistivity (Ωcm)	C _{glue} [fF]
1	20	3.66
6	20	1.43
7	20	2.95
9	1000	2.72
10	1000	2.63
17	200	3.20

C3PD / CLICpix2 test pulses

CLICpix2 + C3PD coupling simulation (M. Vicente)

Measurements with 90Sr source

Particles from a ⁹⁰Sr source, read out from CLICpix2

Assembly #10: CLICpix2 + '1 kΩcm' C3PD

Summary and conclusions

- The CLICpix2 and C3PD ASICs have been tested in capacitively coupled assemblies:
 - Assemblies with higher resistivity C3PD samples are being tested
 - Higher resistivity C3PD chips show similar amplifier performance to the ones with standard resistivity (20 Ωcm)
 - Similar amplifier gain, noise, rise time
 - Larger and faster signal collection is expected for the capacitively coupled assemblies with higher resistivity C3PD
 - Variations in glue uniformity and alignment have been observed
 - CLICpix2 assemblies with planar sensors have been produced and tested. Please refer to Morag's talk for more information on planar assemblies

Next steps:

- Test beam analysis is on-going for the assembly with 1 k Ω cm C3PD (#10)
- Assembly with 200 Ω cm C3PD (#17) to be further tested in the laboratory

This work is a combined effort between CERN EP-LCD and EP-ESE-ME groups

Part II:

Design of a monolithic HR-CMOS sensor chip for the CLIC silicon tracker

Requirements

- Requirements for a chip for the Compact Linear Collider (CLIC) silicon tracker [1]:
 - Single point resolution in one dimension ≤7 μm (transverse plane)
 - Length of short strip/long pixel: $1-10\ mm$ (300 µm for the prototype, based on the minimum area required for the functionality)
 - Energy measurement with 5-bit resolution
 - Time measurement with 10 ns bin and 8-bit resolution
 - No multi-hit capability
 - Material budget 1-1.5% X_0 (i.e. \sim 200 μ m for silicon detector and readout)
 - Power consumption < 150 mW/cm² (Power pulsing, duty cycle 156 ns / 20 ms)
- CLIC Tracker Detector (CLICTD):
 Monolithic detector chip, targeted at the CLIC silicon tracker

The process

- The process selected for the CLICTD design
 - TowerJazz 180 nm High Resistivity (HR) CMOS imaging process
 - Small N-well as collecting electrode
 - Small detector capacitance → Lower analog power consumption
 - Circuits placed in deep P-well, separated from collecting electrode
 - NMOS and PMOS devices can therefore be used with this technology without being coupled to the sensor
 - Process modification: additional n-implant inserted to achieve full depletion
 - Successfully tested with monolithic pixel detector chips (e.g. ALPIDE, ALICE Investigator)

The CLICTD channel

- The detector channel:
 - The detector unit cell consists of a short strip of $30 \times 300 \ \mu m^2$
 - The analog part is segmented in 8 front-ends to ensure prompt charge collection in the diodes
 - Each front-end consists of:
 - The collecting diode
 - A charge sensitive amplifier
 - A discriminator
 - A 3-bit tuning DAC
 - Binary hit information is stored for each of the segments
 - Discriminated outputs are combined by means of an 'OR' gate
 - Time of Arrival (ToA 8 bits, 10 ns time-stamping) and Time over Threshold (ToT 5 bits) measurement is performed for the combined output

The CLICTD channel - Analog front-end

Level shifter, charge amplification and stage with linear TOT

$$V_{OUT} = \frac{Q_{DET}C_X}{C_{EFF}C_{FB}}$$

- Simplified first stage (Alpide approach, transistor reset)
- Signal amplification (xC_x/C_{FB})
- AC coupling between stages
- 1 power supply ©
- Monotonicity in the ToA vs Q_{IN} ⁽²⁾

The CLICTD channel – Digital logic

• 3 modes of measurement:

Mode	Description	
Nominal	8 bits timestamping information (ToA) + 5 bits energy information (ToT)	
Long counter	13 bits timestamping information (ToA)	
Photon counting	13 bits photon counting (number of hits that are above the applied threshold)	

- During acquisition, a 100 MHz clock is provided to the matrix
- During readout, the data are shifted out at 40 MHz
- Readout with zero compression (at channel level) is available
- Total area for digital logic: $\sim 16 \times 300 \ \mu m^2$

HF	ToT[4:0]	ToA[7:0]	HitBits[7:0]
MSB	}		LSB

The CLICTD chip

• Total sensitive area: 128 rows and 16 columns $(4.8 \times 3.84 \ mm^2)$

Testability

- Analog test pulse injection to individual front-ends
- Digital test pulse injection to the input of the logic
- Cluster of pixels monitored in the analog signal domain

- Power consumption (CLICTD matrix only)
 - Analog → Power pulsing
 - Analog power consumption in **continuous power mode:** $\sim 100 \ mW/cm^2$
 - Front-end is set to "Power Off" mode between subsequent bunch trains (power can be reduced by a factor of ~50)
 - Average analog power consumption over the 20 ms cycle: $P_{analog,avg}\cong 2rac{mW}{cm^2}$

Digital → Clock gating

- Acquisition: clock is enabled only for channels that detect a hit
- Readout: the clock is enabled only for the column that is being shifted out
- Acquisition time: \sim 156 ns , Readout time: 500 μ s (for 1 cm^2 matrix, 3% occupancy)
- Average digital power consumption over the 20 ms cycle: $P_{digital,avg} \cong 3 \frac{mW}{cm^2}$
- Periphery power consumption not included in the above calculations
 - Preliminary estimation: $\sim 50 \frac{mW}{cm^2}$ (continuous power, dominated by LVDS drivers' power consumption)

Norkin progres

The CLICTD chip interface

- An I²C interface is used for the slow control (reading/writing internal registers)
- Configuration data are shifted in the matrix using the slow control interface (I²C)
 - A total of 41 configuration bits is shifted in per channel (in two stages, since the area does not allow for 41 flip-flops)
- A serial readout at 40 MHz will be used to shift the data out of the CLICTD chip
 - Compressed readout at channel level:
 - 22 bits are read out for cells that have been hit
 - 1 bit read out for cell that are not hit
 - ENABLE_OUT signal is used to synchronise with DAQ (along with clock output)
 - A 22-bit long header is added before the transmitted data of each column (and also at the beginning / end of frame)
- The CLICTD chip interface is designed to be compatible with the Caribou DAQ system

	Data per frame *	Readout time
No compression	45 kbits	1.12 ms
Pixel compression	3.7 kbits	93 μs

^{*} Calculated assuming an occupancy of 3% Matrix area: $4.8\times3.84~mm^2$ (16×128 pixels) Readout clock running at 40 MHz

Design status

Pixel matrix:

- · Analog front-end and in-channel digital logic are designed
- Physical verification (DRC/LVS) in progress

Periphery:

- Digital periphery blocks are designed. Layout to be finalised following chip integration
- Analog periphery design in progress
- Different blocks re-used from ALPIDE libraries (LVDS driver/receiver, I/O pads, bandgap ...)

• Chip integration:

- Digital-on-top
- Analog periphery to be integrated
- Further verification (physical and functional) to be performed once the layout is complete
- Cluster with monitoring pixels to be added in the periphery. Cluster size to be defined

Verification:

- Full chip verification is being performed using the Universal Verification Methodology (UVM)
- First tests are in progress, using the Verilog netlist
- Tests using the post-layout extracted netlist will follow

Summary and next steps

• The CLICTD chip:

- Simultaneous 8-bit ToA and 5-bit ToT measurement
- I²C interface used for slow control and for programming the pixel matrix
- Serial readout with a clock frequency of 40 MHz
- Data compression at channel level is available
- Chip dimensions: $5 \times 5 mm^2$
- Sensitive area: $4.8 \times 3.84 \ mm^2$ (16×128 channels)

Next steps:

- The chip is currently in the final design stage
- Full chip verification is being performed using the Universal Verification Methodology (UVM)
- Integration to be complete in the coming months
- Submission is planned for ~November 2018

