

Combining TCAD and Monte Carlo methods to simulate HR-CMOS pixel detectors using the Allpix² framework

Katharina Dort, CERN Magdalena Munker, CERN <u>Simon Spannagel</u>, CERN

CLICdp Collaboration Meeting 29 August 2018

The Challenge

- Goal: assess detector performance parameters
- Issue: complex sensor, require precise microscopic description

- Full transient simulation of a single MIP incidence in TCAD takes **O(3h)**
 - 3D performance of pixel cell requires at least O(200k) events \rightarrow not feasible
 - Use simplified models to reduce simulation time to **O(ms)** per event
- Validated simulation allows optimization of new sensor designs
- CLICdp: CLICTD tracker chip to be submitted in this technology (see Iraklis' talk)

Simulation - Concept

- Use **TCAD for electrostatic simulation** of the field with bias voltage applied
- Export field, convert into regular grid (barycentric interpolation)
- Use Allpix Squared to simulate particle passage (see Paul's talk)
 - Geant4 models initial energy deposition & secondary particle creation
 - Charge carriers are propagated using drift-diffusion model (RKF5)
- Simulation model based on "collected charges"
 - With small collection diode, impact from induction during drift should be small
 - Define region of collection implant for collection of charges

Allpix² Drift Visualization

- Allpix² allows to record drift/diffusion path of individual charge carriers
 - 3D positions filled in ROOT TH3D
- On the following pages:
 - One particle, perpendicular incidence in pixel center
 - Projection of drift paths onto X-Z plane (pitch vs. sensor depth)
 - Only draw charges which have reached the sensor implant
- Stop the propagation after different integration times
 - Allows to see where charge carriers are collected from
 - And how they reach the implant

S Spannagel - Combining TCAD & Monte Carlo: Simulating HR-CMOS Detectors

15ns

29/08/2018

S Spannagel - Combining TCAD & Monte Carlo: Simulating HR-CMOS Detectors

Simulation - Detector

- ALICE Investigator-like detector
 - 28x28 um pixel pitch
 - 2x2 um charge collection implant
- See Magdalena's talk for e-field
- SPS Beam: 120 GeV Pions
- Simulate detector only, no telescope
 - Monte Carlo truth used as tracks

- Comparison with test beam data from Magdalena's PhD thesis
- Using CLICdp Timepix3 telescope, ca 25k events recorded

Cluster Size Distributions

In-Pixel Distribution of Cluster Size

- Using Monte Carlo truth to calculate position within pixel
- Fold statistics from full sensor into four pixel cells
- Mean size behaves as expected:
 - 1-px cluster in pixel center,
 - Charge sharing towards neighbors
 - In edges
 - In corners

Projected Cluster Sizes – Correlation

Mean Cluster Size

29/08/2018

S Spannagel - Combining TCAD & Monte Carlo: Simulating HR-CMOS Detectors

Cluster Charge Distribution

- Charge distribution matches well
- Simulation includes
 - Landau fluctuations,
 - Delta rays, ...
- Using Geant4's photoabsorption Ionization model (PAI)
 - Improve description of energy deposition
 - Relevant since charge is collected from upper ~40um only

A Comment On "Tuning"

- Several parameters found with strong influence on simulation:
 - Electric field small changes yield strong changes
 - Integration time needs to be adapted to be "equivalent" to actual measurement
- Interesting observation: these parameters are not "free", only one value produces sensible results in all observables together (global minimum)

- Negligible influence from variations of
 - Threshold dispersion, input noise, additional noise hits
 - Stepping size of the charge transport algorithm
 - Number of charge carriers propagated together $(5 \rightarrow 1)$

Efficiency

- Detection efficiency as function of charge threshold
- Good reproduction of shape
- Absolute value of data expected to be lower
 - Complex test beam setup
 - Effects of readout system
- ALPIDE chip in same technology reaches similar efficiencies as simulation

CERN

Detector Resolution

- Compare particle impact with reconstructed cluster position
- Using Monte Carlo truth information
 - Smeared with measured telescope resolution: ~2um

- Residual width (distribution RMS):
 - Data: 3.7um
 - Simulation: 3.6um

Detector Resolution

- Threshold scan 40 700e
 - No telescope resolution subtracted
- Very good agreement
- Deviations only at lowest threshold
 - Chip designers: "to be expected"
 - Cross-talk/effects in test chip
 - Various, only partially understood noise sources (non-gaussian)
- Relevant range for future chips:
 - 150 300e

Outlook: Magnetic Fields

CERN

- Detectors will be operated in strong magnetic fields
 - Altered charge collection behavior due to additional Lorentz force
 - Performance changes expected
- Test beam measurements in fields very complex
 - Use validated simulation to test performance in magnet
 - Optimize detector geometry (sensor tilt)
 - Example:
 - 4T homogeneous magnetic field, parallel to sensor surface
 - Same detector/simulation as before
 - VMWIP Very Much Work In Progress

In-Pixel Residual in X – Qualitative Comparison

Efficiency in Magnetic Field

- Efficiency drops earlier
 - Altered charge sharing
 - Earlier drop w/ magnetic field
- Chips expected to be operated at ~< 300e threshold
 - No large impact expected
- Study very preliminary
 - Adapt geometry to CLICTD
 - Validate with test beam data

Summary

- First simulation of HR-CMOS process combining TCAD & Monte Carlo methods
 - Direct access to performance parameters
 - Allows to gauge HR-CMOS sensor designs
- Simulations validated with test beam measurements of ALICE Investigator
 - Very good agreement in most control observables and performance parameters
- Validated simulation can be used to simulate
 - CLICTD chip performance (different geometry, potentially different doping)
 - Behavior under different conditions such as magnetic fields
- > 1.7 kThanks to **Katharina Dort**, CERN Summer Student @ LCD!

CERN

Drift Paths of all Charge Carriers $\widehat{\mathbb{G}}_{\mathbb{N}}^{0.05}$

