SiW Ecal beam tests in 2017 and 2018 Review and preliminary results

A. Irles, LAL 29th August 2018, CLIC Workshop

Outline of the talk

- The SiW-ECAL technological prototype
- Beam Test 2017 DESY TB24
- Beam Test 2018 DESY TB21 and TB24
- Ongoing activities

SiW-ECAL for future LC

Basic requirements of a PF calorimeter for future LC

- Extreme high granularity
- Compact and hermetic (inside magnetic coil)
- Tungsten as absorber material
 - Narrow showers
 - Assures compact design
 - Low radiation levels forseen at LC
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{mm}, I_1 = 96 \text{mm}$
- Silicon as active material
 - Support compact designs
 - Allows pixelisation
 - Robust technology
 - Excellent signal/noise ratio

The SiW ECAL R&D is tailored to meet the specifications for the ILD ECAL baseline proposal

SiW-ECAL for the ILD

SiW-ECAL technological prototype

Short slab:

- Adapter board (SMB) and Detector Interface (DIF)
- ASU (Active Sensor Unit),
 - PCBs (FEV10/11) with silicon P-I-N diodes as active material (325um, 4 kΩcm, N-type)
 - 1024 channels per slab
- VFE electronics: 16 Skiroc2 ASICS (in the ASU)
 - Auto trigger, double gain ADC
 - Low power consumption & power pulsing (25μW/ch)
 - 15 memory cells (SCA) per channel

DESY@2017 - Commissioning

Commissioning & Passport delivery

- Noise control → noisy channels: 7-8%: very conservative approach.
 - Found a pattern on the spatial distribution of ~4% some noisy channels

Autotrigger optimization

 Threshold scans made for all channels → one optimal threshold found for each ASIC

Threshold scan curves with noise

Auto trigger threshold set at ~0.5 MIP

DESY@2017 - Setup & program

Setup :

- 6 FEV11, 1 FeV10 each equipped with 4 325um Si wafers and 16 Skiroc2
- Power pulsing and ILC mode (emulated ILC spill conditions)

Physics program:

- Calibration run with 3 GeV positrons perpendicular beam without tungsten absorber plates
- Electromagnetic showers program.
- Calibration run with 3 GeV positrons in ~45 degrees (6 slabs)
- Magnetic field tests with 1 slab (up to 1 T)

DESY@2017 - MIP calibration

- MIP scan: Si ECAL (w/o the W)
 - Positrons of 3 GeV (~2 kHz rate, beam spot with slightly irregular shape and size <2cm diameter)
 - Simple analysis done module by module
 - Pedestal correction done chip/channel/sca wise, Energy calibration done chip/channel wise
 - MIP: We fit the 98% of available channels \rightarrow MPV = 62.2 ADC, sigma= 3.2 ADC (dispersion of 5.1 %)

DESY@2017 - Hit detection efficiency in tracks

• After calibration we performed the track reconstruction.

Hit energy distribution in tracks for all calibrated cells

Hit detection efficiency for tracks

DESY@2017 - Tests under Magnetic Fields

- Magnetic field tests
 - One slab in a special plastic support
 - Magnetic field from 0 to 1 T.
 - With and without beam.
- No failure/loss of performance observed during the operation and after the first analysis.
 - ~20 hours of data in total.

DESY@2017 - Tests under Magnetic Fields

Very stable noise conditions

DESY@2017 - Showers

Tungsten program

- Scans of various energies (from 1-5.8 GeV).
- Scan using different tungsten configurations

Raw shower barycenter maps

DESY@2017 - Summary

- Successful beam test of the SiW-ECAL technological prototype.
 - first time with fully assembled detectors elements (first 7 of 10000 needed for ILD)
- MIP calibration achieved at the 5% level.
- First looks at shower response are very promising
- Operating in 1T magnetic field
 - Also nice and consistent calibration results.

- Presentations + proceedings for CHEF2017, IEEE2017, LCWS2017
- Writing of a technical paper is ongoing.
- Excellent prospects for next beam tests !! → DESY@2018

DESY@2018 - Setup & program

Technical beam test with the goals of:

- Testing an electrical prototype of a long slabs (next slides)
- Crosscheck 2017's results → same modules and same commissioning files
- Tests of a new ASU prototytpe FEV13

FEV13&SMBv5: LLR & Kyushu university collaboration

- With the aim of noise level improvement by separating PCB layers for the analogue and digital power of the ASIC
- 4x750 μm wafers (instead of 320)
- VFE: SK2a instead of SK2
 - allows for fine tunning of thresholds + brings the possibility to use the TDC
- Data is being studied.

DESY@2018 - Electrical prototype of Long Slab

Goals

- Validating the electrical behavior of a long slab (clocks, data integrity, noise level on length)
- Readout time and electrical consumption studies

The prototype:

- Daisy chain of 8 ASU (extendable to 12)
- Corresponding to typical barrel length
- Based on FEV12 ASU & SMBv4 (in stock)
- No ILC geometrical constraint (thickness)
- Baby-wafer 4x4 pixels on each ASU

It needed some adaptations:

- HV filtered by RC circuits to reduce noise
- Of the impedance of lines (done afte simulations)

DESY@2018 - Long Slab Setup

- Mechanical structure with mono-directionnal wheels for precise positionning
- Full rotation system with index
- Black cover for light isolation
- Laser alignment with silicon pads
- Compact DAQ on a wheel table
- 3224mm long
- 8 target accessible in zone 21, only 7 in zone 24

DESY@2018 - long slabs program

- Single cell calibration using 3GeV electrons and orienting the long slab at different angles
 - Calibrate the 8 ASUs
 - With short slabs as reference (running with independent DAQs)
- Long slabs response to showers
 - 5X0 of lead in front of one ASU

Preliminary results: E. Mestre & V. Lohezic

Summary and outlook

- Successful construction and operation in beam of the SiW-ECAL technological prototype made of short slabs.... And a electrical long slab (with very good performance)
- Still some work to be done towards realistic ILD prototype. Many challenges being faced at the moment:
 - Long slab: from a electrical prototype to a realistic prototype
 - Compactification of DAQ and active units.
 - Studies for ILD integration.
- Combined beam test with the SDHCAL at CERN in 2018
 - From the 26th September to the 3rd October

Back-up

Towards a real detector: challenges

- Long slabs : up to ~15 ASU (~3m)
 - Complex object: mechanics and electronics
- Spatial constraints:
 - limited space between layers and between ECAL and AHCAL
 - Control & Readout electronics at the extremity of the Slab
 - Signal Integrity over the Slab
- Low power consumption.
- Thermal uniformity
- Mechanical Assembly process

Drawing H. Videau

Calorimetry for the International Linear Collider (ILC)

Physics Prototype

Proof of principle

2003 - 2011

Number of channels: 9720

Pixel size: 1x1 cm2

R_{M.eff}: ~ 1.5cm

Technological Prototype

Engineering challenges

Number of channels: 45360

Pixel size: 0.55x0.55 cm2

R_{M.eff}: ~ 1.5cm

Weight : ~ 700 Kg

LC detector

ECAL:

Channels: ~100 106

Total Weight: ~130 t

Si wafers

Designed for ILC : Low cost, 3000 m2

Minimized number of manufacturing steps Target is 2.5 EUR/cm2

Now: 10 EUR/cm2 (Japan)

I(V) and C(V) characterization

Breakdown voltage >500V Current leakage <4 nA/pixel (chip is DC coupled) Full depletion at <100 V (~40 V with 320 um, ~70 V with 500um) Null C(V) slope to avoid dC/dV noise

EUDET layout *Prototype from Hamamatsu*

Wafers are glued to PCB (robot, LPNHE)

Segmented guard-rings layout as an option

R&D on crosstalk

Segmented guard-rings layout as an option. Systematics studies with laser systems and simulation.

Front end electronics and DAQ

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)

- SiGe 0.35µm AMS, Size 7.5 mm x 8.7 mm, 64 channels
- High integration level (variable gain charge amp, 12-bit Wilkinson ADC, digital logic)
- Large dynamic range (\sim 2500 MIPS), low noise (\sim 1/10 of a MIP)
- Auto-trigger at 0.1-0.5 MIP
- Low Power: (25µW/ch) power pulsing switch off electronics bias currents during bunch trains

N.B. Final numbers may vary

- Prototype version (Skiroc 2 and 2a) for R&D and beam tests
- Definitive version will be optimized for ILC and work in zero supression conditions.

Assembly chain

LABORATOIRE

DE L'ACCÉLÉRATEUR L I N É A I R E

LKDJIIOD

Space constraints for the Slab Interface Board (SL-Board):

Power and signal cables and read-out electronics

E-CAL Services

- MEGA Microelectronics
- Investigating ultra thin PCB, with chip on board COB
 - Semidonductor packaging, wire bonded.
- LAL/OMEGA collaboration with Corean Group of SKKU, EOS company for the PCB and Kale company for the wire bonding)
 - Strong synergies between university and local companies
 - Testbenchs at LAL and SKKU, training of students done at LAL.
- FEV11_COB production ready (10 boards of 1.1mm, good planarity and good electrical response). 3 sent to LAL
 - Baby Wafer gluing + tests ongoing

- New interconnection proposal for the ASU with the SKIROC-BGA option
 - old approach based in flat kapton cables seems not feasible at production scales (see back-up slides)
- Gradconn connector BB02-YN https://www.gradconn.com/Products/BoardToBoard/MatingHalves/BB02-YN/BB02-WF
 - 35 pins, Height: 1,5 mm possibly 1,27 mm.
 - Pitch 1mm compatible with existing ASUs
 - Current rating: 1 A., AC 300 Volts

- Proposal to use new ultra-flat capacitors to distribute over the ASUs. This will permit:
 - Peak current reduction: especially through the connectors
 - No more voltage drop along the slab
 - Homogeneous peak power dissipation during power pulsing.
- We go from the 400 mF capacitor/ 12A (peak Current) for the whole SLAB to 140 mF / 1.2 A per ASU.

Brand new product, appeared few months ago

muRata

- New interconnection proposal for the ASU with the SKIROC-BGA option
 - old approach based in flat kapton cables seems not feasible at production scales (see back-up slides)
- Gradconn connector BB02-YN https://www.gradconn.com/Products/BoardToBoard/MatingHalves/BB02-YN/BB02-WF
 - 35 pins, Height: 1,5 mm possibly 1,27 mm.
 - Pitch 1mm compatible with existing ASUs
 - Current rating: 1 A., AC 300 Volts

