Near-future prospects for nuclear PDFs

Hannu Paukkunen

University of Jyväskylä, Finland Helsinki Institute of Physics, Finland

PDF4LHC meeting, March 28th 2018

Latest available nPDF parametrizations in 2018

	00	10		45	10
	EPS09	DSSZ12	KA15	NCTEQ15	EPPS16
Order in α_s	NLO	NLO	NNLO	NLO	NLO
DIS in ℓ [−] +A	✓	✓	$\overline{}$	✓	\checkmark
Drell-Yan in p+A	✓	✓	✓	✓	✓
RHIC pions d+Au	✓	✓		✓	\checkmark
Neutrino-nucleus DIS		✓			✓
Drell-Yan in π + A					✓
LHC p+Pb dijets					✓
LHC p+Pb W, Z					√
Q cut in DIS	1.3 GeV	1 GeV	1 GeV	$2\mathrm{GeV}$	$1.3\mathrm{GeV}$
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	16	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta\chi^2$	50	30	N.N	35	52
proton baseline PDFs	CTEQ6.1	MSTW2008	JR09	стео6м-like	CT14NLO
Heavy-quark effects		✓		✓	√
Flavour separation				partial	full
Reference	JHEP 0904 065	PR D85 074028	PR D93, 014026	PR D93 085037	EPJ C77 163

Expect "SOON": Andrés-Zurita NNLO nPDFs [https://indico.cern.ch/event/639067/contributions/2642447/]

2/13

This talk restricted to:

- \bullet CMS $\sqrt{s}=5\,\mathrm{TeV}$ p-p and p-Pb dijets
- Towards including LHCb D-meson measurements

 \bullet Normalized dijet cross sections at $\sqrt{s}=5\,\mathrm{TeV}$ in p-p [CMS PAS HIN-16-003]

$$\frac{d\sigma^{\mathrm{pp}}(\eta_{\mathrm{dijet}}, p_{\mathrm{T}}^{\mathrm{average}})}{\int d\sigma^{\mathrm{pp}}(\eta_{\mathrm{dijet}}, p_{\mathrm{T}}^{\mathrm{average}}) d\eta_{\mathrm{dijet}}} \qquad p_{\mathrm{T}}^{\mathrm{average}} = (p_{\mathrm{T}}^{\mathrm{leading}} + p_{\mathrm{T}}^{\mathrm{subleading}})/2$$

$$\eta = (\eta^{\mathrm{leading}} + \eta^{\mathrm{subleading}})/2$$

$$\frac{(\eta_{\mathrm{sw}}) = 5.02 \, \mathrm{TeV}}{\rho_{\mathrm{reliminary}}} \qquad \frac{\rho_{\mathrm{reliminary}}}{\rho_{\mathrm{reliminary}}} \qquad \frac{\rho_{\mathrm{preliminary}}}{\rho_{\mathrm{reliminary}}} \qquad \frac{\rho_{\mathrm{preliminary}}}{\rho_{\mathrm{reliminary}}} \qquad \frac{\rho_{\mathrm{preliminary}}}{\rho_{\mathrm{reliminary}}} \qquad \frac{\rho_{\mathrm{preliminary}}}{\rho_{\mathrm{preliminary}}} \qquad \frac{\rho_{\mathrm{preliminary}}}{\rho_{\mathrm{preliminary}$$

• The preliminary data not well reproduced by the current PDFs

 \bullet Normalized dijet cross sections at $\sqrt{s}=5\,\mathrm{TeV}$ in p-p [CMS PAS HIN-16-003]

$$\frac{d\sigma^{\rm pp}(\eta_{\rm dijet}, p_{\rm T}^{\rm average})}{\int d\sigma^{\rm pp}(\eta_{\rm dijet}, p_{\rm T}^{\rm average})d\eta_{\rm dijet}}$$

$$\begin{split} p_{\mathrm{T}}^{\mathrm{average}} &= (p_{\mathrm{T}}^{\mathrm{leading}} + p_{\mathrm{T}}^{\mathrm{subleading}})/2 \\ \eta &= (\eta^{\mathrm{leading}} + \eta^{\mathrm{subleading}})/2 \end{split}$$

- Normalization apparently suppresses the experimental systematic uncertainties
- NLO calculations are wider in $\eta_{\rm dijet}$ than the (preliminary) data
- The scale uncertainty is very small for $\eta_{
 m dijet} \in [-1,2]$ would not expect large NNLO effects. Already NLO to LO difference is small near $\eta_{
 m dijet} \sim 0$

ullet Normalized dijet cross sections at $\sqrt{s}=5\,\mathrm{TeV}$ in p-Pb [CMS PAS HIN-16-003]

$$\frac{d\sigma^{\rm PPb}(\eta_{\rm dijet},p_{\rm T}^{\rm average})}{\int d\sigma^{\rm PPb}(\eta_{\rm dijet},p_{\rm T}^{\rm average})d\eta_{\rm dijet}}$$

$$\begin{split} p_{\mathrm{T}}^{\mathrm{average}} &= (p_{\mathrm{T}}^{\mathrm{leading}} + p_{\mathrm{T}}^{\mathrm{subleading}})/2 \\ \eta &= (\eta^{\mathrm{leading}} + \eta^{\mathrm{subleading}})/2 \end{split}$$

- Normalization apparently suppresses the experimental systematic uncertainties
- NLO calculations are wider in $\eta_{\rm dijet}$ than the (preliminary) data
- The scale uncertainty is very small for $\eta_{
 m dijet} \in [-1,2]$ would not expect large NNLO effects. Already NLO to LO difference is small near $\eta_{
 m dijet} \sim 0$
- Similar situation in p-Pb measurements

Nuclear modification — a ratio of ratios

- ullet The preliminary $R_{
 m pPb}^{
 m norm.}$ data decently described by EPPS16
- The data uncertainties beat EPPS16 by far
- ullet Some deviations in the backward direction (probing **very** large- x_{Pb} region)

 The effect of these CMS preliminary data estimated by an improved PDF-reweighting/profiling method (check out P. Paakkinen in DIS'18)

- The preliminary data promise a major effect in EPPS16 even more dramatic for nCTEQ15 which has larger gluon uncertainties at large x.
- Have to settle down the issues (discussed in the previous slides) with the normalized spectra before can include these data in global nPDF fits.

- The potential of D (and B) meson production has been demonstrated in p-p [PRL 118 072001, EPJ C75 396]
- Good gluon resolution based on including data down to $p_{\rm T}^{\rm D}=0$

• Recent $R_{\rm pPb}$ data from LHCb [JHEP 1710 (2017) 090] show compelling evidence of small-x shadowing

Idea introduced in [EPJ C77 (2017) 1] and then applied in [ARXIV:1712.07024]:

$$d\sigma(\mathrm{D}^0) = f_g(x_1, Q_f^2) \otimes \frac{d\sigma_{gg}^{\mathrm{D}^0}(Q_f^2, Q_r^2)}{\otimes f_g(x_2, Q_f^2)}$$

Fit the coefficient functions to p-p data

- Neglects all but the gluon-gluon channel
 - Close to fixed-flavour number scheme (FFNS)
 - EPPS16/nCTEQ15 are not FFNS PDFs...
- Based on $2 \rightarrow 2$ kinematics
 - May bias the x_2 distributions to overly low x
- I would say a more appropriate treatment requires a general-mass variable flavour number (GM-VFNS) approach

In FFNS, the heavy quarks are produced in three partonic processes

$$g + g \rightarrow Q$$
, $q + \overline{q} \rightarrow Q$, $q + g \rightarrow Q$

Phenomenological fragmentation functions (FFs) for $Q \to D$ transition

• FFNS cross sections diverge as $\sim \log(p_{\rm T}^2/m^2)$. In GM-VFNS these logs are resummed into heavy-quark PDFs and scale-dependent FFs

$$\frac{d\sigma(h_1+h_2\to D^0+X)}{dP_{\mathrm{T}}dY} = \sum_{ijk} \int_{z_{\mathrm{min}}}^1 \frac{dz}{z} \int_{x_{\mathrm{1}}^{\mathrm{min}}}^1 dx_1 \int_{x_{\mathrm{2}}^{\mathrm{min}}}^1 dx_2$$

$$f_i^{h_1}(x_1,\mu_{\mathrm{fact}}^2) \quad \frac{d\hat{\sigma}^{ij\to k}(x_1,x_2,m,\mu_{\mathrm{ren}}^2,\mu_{\mathrm{fact}}^2,\mu_{\mathrm{frag}}^2)}{dp_{\mathrm{T}}dy} \quad f_j^{h_2}(x_2,\mu_{\mathrm{fact}}^2) \quad D_{k\to D^0}(z,\mu_{\mathrm{frag}}^2)$$

Coefficient functions behave as FFNS at low $p_{\rm T}$, as zero-mass matrix elements at high $p_{\rm T}$

Scale-dependent, universal FFs

 LHCb p-p cross sections fairly well reproduced by GM-VFNS approach in SACOT-m_T scheme — a generalization of SACOT-χ to hadroproduction

- ullet x_2 distributions in GM-VFNS peaked at low x a long tail towards large x
- ullet Sizable theory uncertainties at low p_{T} : GM-VFNS scheme dependence, ambiguous fragmentation variable z, scale uncertainties, etc...
 - \Rightarrow Will need to set a cut $p_{\rm T} \gtrsim 5\,{\rm GeV}$ or so

Summary

• The (preliminary) CMS $\sqrt{s}=5\,{
m TeV}$ dijet $R_{
m pPb}$ data promises a huge potential to constrain nuclear gluons at large-x

However, the $\eta, p_{\rm T}$ dependence of the (preliminary) p-p and p-Pb spectra are not well reproduced — only the ratio seems OK

- ⇒ Have to sort out these discrepancies before one can confidently include the data in global fits
- Potential of LHCb D-meson measurements in p-Pb are significant at small-x

GM-VFNS approach can describe the p-p data down to $p_{\rm T}=0$ but the theory uncertainties are huge — requires a cut $p_{\rm T}\gtrsim 5~{\rm GeV}$ or so

 \Rightarrow Retain sensitivity to small-x but at higher interaction scale