

What we measure when we measure σ

Cross-section extraction techniques at T2K

Stephen Dolan For the T2K Collaboration

Stephen.Dolan@llr.in2p3.fr

Stephen Dolan

Unfolding

- Unfolding is a key part of cross-section analyses
- It is the process of deconvolving detector resolution effects from data
- (Almost) all recent results which can be compared to theory/generator predictions are unfolded
- Unfolding without care can bias your result

Unfolding

- Measure **selected** number of events in bins of a **reconstructed** quantity
 Efficiency correct
 Unfolding
- Want the total number of signal events in bins of a true quantity

- Unfolding is finding U_{ij} from S_{ji} .
 - Simplest method: use S_{ji}^{-1}

Stephen Dolan

Nulnt 2018, GSSI

5

Stephen Dolan

Stephen Dolan

250 200

150

100 50

-2

Observable of interest

- In most realistic circumstances • we get a result which oscillates around the truth
- It doesn't look great

Stephen Dolan

- From the correlation matrix we can see that the oscillatory behaviour is accompanied by large bin-to-bin anti-correlations.
- In this case, actually find that the $\frac{\chi^2}{NDOF} = 0.44$, pretty good!
- In fact, if we want to minimise bias this is probably the best thing we can do

Stephen Dolan

Nulnt 2018, GSSI

0.8

0.6

0.4

0.2 0

-0.2 -0.4 -0.6

-0.8

-1

12

8

10

The unregularised result

- Although the result is absolutely correct, it can be almost meaningless without the accompanying covariance matrix.
- Can you judge which of the models on the left fits the result best?

The unregularised result

- Although the result is absolutely correct, it can be almost meaningless without the accompanying covariance matrix.
- Can you judge which of the models on the left fits the result best?
- Even when we have the covariance matrix "chi-by-eye" is not very reliable ...

• The unregularised result is **ideal for calculating** χ^2 , but potentially very misleading for "by-eye" comparisons.

Case study: $CC0\pi$ analysis

- Our unregularised ND280 $v_{\mu}CC0\pi$ analysis shows a dip in the momentum distribution for forward going muons at about 1 GeV
- This had some physicists excited, there has been some discussion about what this large "dip" could be.
- But in reality the **large anti-correlations** between the pertinent bins make this result compatible with no dip.
- The "dip" may just be a statistical effect from the unregularised unfolding

13

The case for regularisation

Unregularised results with large anti-correlations are the best option for making χ^2 comparisons, but:

- We might want to have an idea of the result's shape or to compare the model in a specific region of phase-space
- We can't accurately estimate the χ^2 from a plot in a paper or conference
- Not enough result comparison papers / talks calculate χ^2 ...

Perhaps producing a result which can be better interpreted by eye could be useful too ...

Can we just re-bin it?

The oscillatory unfolded results are caused by a combination of:

- Fine binning compared to the detector resolution
- Large statistical uncertainty in the reco. data

Can we just widen our bins until we get a smooth result?

Stephen Dolan

Nulnt 2018, GSSI

15

Can we just re-bin it?

- Yes! Many of T2K's recent results do this (see Ciro's & Dan's talks)
- This is largely unbiased unfolding where the resolution of the detector is clearly shown by the width of the bins
- Potential issues*:
 - Bin widths optimised on MC, not on data
 - Coarser binning can give greater model dependencies

* Although these could be mitigated by first extracting a result in fine bins and then combining adjacent bins until the result is smooth

Tikhonov regularisation

 Rather than combining bins completely, another option is to loosely tie them together with a penalty term (to be used in the likelihood fitting method of cross-section extraction – see backups)

$$\chi^2_{reg} = p_{reg} \sum_i (bin_i - bin_{i-1})^2$$

(this is just one potential penalty term, others are possible depending on how exactly you want to smooth your result)

- If p_{reg} is very large then this is equivalent to combining bins
- The inclusion of a penalty term means that the result moves away from the maximum likelihood solution and is therefore **at least a little biased**.
- How can we choose p_{reg} to give us a result we can better compare to by-eye but avoid excessive bias?

20

Nulnt 2018, GSSI

Stephen Dolan

Read p_{reg} as regularisation strength

Read p_{reg} as regularisation strength

Read p_{reg} as regularisation strength

Read p_{reg} as regularisation strength

Regularisation optimisation: The L-curve

Regularisation optimisation: The L-curve

Balance
 regulation with
 bias by choosing
 the "kink" in the
 curve

 L-curve can be formed on real data – data driven regularisation

 Well established statistical method to select the smoothest of many almost degenerate solutions:

<u>http://epubs.siam.org/doi/abs/10.1137/1034115</u> <u>http://epubs.siam.org/doi/abs/10.1137/0914086</u> <u>http://arxiv.org/pdf/1205.6201v4.pdf</u>-use in TUnfold

Stephen Dolan

Case study: CC0 π in δp_T

- Measure CC0 π +protons cross section in missing transverse momentum (δp_T) Phys. Rev. D **98**, 032003 (2018)
- Unregularised best for χ^2 , regularised best for actually showing anywhere

Stephen Dolan

Nulnt 2018, GSSI

27

Case study: CC0 π in δp_T

- Measure CC0 π +protons cross section in missing transverse momentum (δp_T) Phys. Rev. D **98**, 032003 (2018)
- Unregularised best for χ^2 , regularised best for actually showing anywhere

Stephen Dolan

D'Agostini's method

*Although this method uses Bayes' theorem, it is not a Bayesian technique (in fact it's equivalent to the widelyused "Expectation-maximisation algorithm") [M.Kuusela]

• Using Bayes' theorem* to form unsmearing matrix:

- Most commonly used method (MINERvA, MiniBooNE, T2K)
- If prior formed from MC model dependence is explicit
- Mitigate by updating **prior** with unfolded result and iterating
- Many iterations (typically hundreds / thousands) \rightarrow unregularised result

D'Agostini's method

*Although this method uses Bayes' theorem, it is not a Bayesian technique (in fact it's equivalent to the widelyused "Expectation-maximisation algorithm") [M.Kuusela]

- Changing the number of iterations can change physics conclusions
- Typically select number of iterations based on mock-data studies
- If real data looks different, can select "wrong" number (toy example in backups)
- Benjamin will show this with a real analysis, presents a data-driven alternative

See talk from Benjamin Quilain

Efficiency corrections

- After unfolding we have the a measure of the true number of selected signal events
- To get to a cross section, we need to correct for our detectors acceptance
- It's also easy to add bias here ...
- Not entirely separate from unfolding
 - Unfolding in too few variables can give bias here

For more details: arXiv 1805.07378 (TENSIONS Workshop 2016)

Stephen Dolan

• I want to measure a cross section in some range of proton momentum

- But my detection efficiency depends on both proton momentum and angle (and on other particles, but let's focus on the angle for the moment!)
- I can't know the efficiency (ϵ) without knowing the distribution of proton angle within the bin

• I want to measure a cross section in some range of proton momentum

• The efficiency in the momentum bin a convolution of the efficiency and the predicted cross section

• I want to measure a cross section in some range of proton momentum

- The efficiency in the momentum bin a convolution of the efficiency and the predicted cross section
- Compared to GiBUU, GENIE predicts a higher cross section in the high efficiency region → GENIE predicts a higher (~5-10%) efficiency
- Efficiency depends on the input model \rightarrow Bias

Kinematic constraints

Placing kinematic constraints on outgoing particles $(p_{\mu,p}, \theta_{\mu,p})$ can leave us with a relatively flat efficiency in a specific region of $\cos \theta_p$

- In this case the shape of the input model doesn't alter the efficiency \rightarrow model independent correction!
- T2K analyses try to ensure integration only over flat-efficiencies in observables where simulations have poor predictive power (Example in backups)

Summary

- Unfolding / efficiency correcting without bias is hard but our analyses have some innovative ways to mitigate the problem
- All methods (not just on T2K) give results with some correlations
 - χ^2 (or similar) is usually essential to validate physics conclusions

Unregularised Result

- ✓ Gives correct χ^2 with no unfolding bias
- X Potentially useless for anything other than χ^2 without corresponding covariance, and even then we can't trust "chi-by-eye"
- Useful part of data release and as a reference to check bias of regularised results

Regularisation

- ✓ Smoother results, easier to interpret
- X Adds at least some bias worse for getting reliable χ^2
- Not easy to choose a regularisation strength that suits data based on MC
 Use data-driven methods

Stephen Dolan

Just don't unfold!

 Producing an unfolded result that can be interpreted by-eye with is hard! But maybe there's another way ...

Sounds easy! Right, Lukas...?

Thank you for listening

Efficiency correction example

- Phys. Rev. D 98, 032003
- Measuring δp_T relies on integrating the efficiency over $p_{\mu,p}$, $\theta_{\mu,p}$
- We set kinematic constraints in each to keep efficiency relatively flat, especially in regions of phase space where models have low predictive power (proton kinematics)
- Still not perfect, ideally should efficiency correct in all relevant kinematics

Stephen Dolan

Nulnt 2018, GSSI

39

D'Agostini's method

 r_i/t_i - reco/true bin j/i

• Using Bayes' theorem* to form unsmearing matrix:

*Although this method uses Bayes' theorem, it is not a Bayesian technique (in fact it's equivalent to the widely-used "Expectationmaximisation algorithm") [<u>M.Kuusela</u>]

- Most commonly used method (MINERvA, MiniBooNE, T2K)
- If prior formed from MC (as it typically is), model dependence is explicit
- Mitigate by updating prior with unfolded result and iterating
- Many iterations (typically many hundreds / thousands) \rightarrow unregularised result

Gaus (0.1,1.0) smear, 1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

Stephen Dolan

Gaus (0.1,1.0) smear, 1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

Stephen Dolan

Gaus (0.1,1.0) smear, 1.0 bin width, 2000 events, Truth is a Gaus (0,2.0), Input is a BW(0.3,2.5)

Stephen Dolan

Nulnt 2018, GSSI

-0.6

-0.8

12

10

-0.6

-0.8

12

10

12

10

-0.6

-0.8

Gaus (0.1,1.0) smear, 1.0 bin width, 2000 events, Truth is a Gaus (0,2.0), Input is a BW(0.3,2.5)

2000 iterations (~unreg) $\chi^2_{truth} = 2.9, \chi^2_{input} = 134$ 50 iterations $\chi^2_{truth} = 32, \chi^2_{input} = 254$

4 iterations $\chi^2_{truth} = 9606, \chi^2_{input} = 1568$

Stephen Dolan

Gaus (0.1,1.0) smear, 1.0 bin width, 2000 events, Truth is a Gaus (0,2.0), Input is a BW (0.3,2.5)

How many iterations? - Choose via data

 To mitigate this issue two recent T2K analyses utilising D'Agostini's method employ a data-driven regularisation

Case Study: On-axis CC1 π measurement

- Number of iterations chosen via fake data: **3 7**
- Number of interactions chosen via data: **16**

See talk from Benjamin Quilain

What if my L-curve isn't L-shaped?

Is the condition on the Yaxis reasonable?

• If the form of the penalty pushes the result somewhere that is incompatible with the no regularisation case, the drop on the y-axis can be limited to very small values of p_{reg}

90 of result $p_{reg} = 0.025$ 80 $p_{reg} = 0.05$ 'Spiky-ness' 70 $\mathbf{k} p_{reg} = 0.75$ 60 $p_{reg} = 0.1$ 50 40 = 0.25p_{rea} 30 = 0.5 $p_{reg}^{2.5} = 7.5$ 20 $p_{reg}=25$ $p_{reg} = 50$ = 0.75 p_{reg} = 10*p*_{rea} 10 100 200 300 500 600 700 800 900 400 χ^2 of fit

How did you form the x-axis?
This needs to be a measure of bias.

What is the first value on the x-axis?

• How does this compare with the x-axis value of the unregulairsed result? If they're very different consider smaller p_{reg}

Aesthetic regularisation

• A result with a carefully chosen regularisation strength shouldn't significantly alter the physics conclusions with respect to the unregularised case – it's just aesthetic.

Unregularised result as a reference for regularised result bias

TABLE IX. The full and shape-only χ^2 comparisons to the δp_T result with nominal and no regularization. The table is ordered by the size of the no-regularization shape-only χ^2 . More details of these models can be found in Sec. IVA.

Generator	Full		Shape Only	
	No Reg.	Nom. Reg.	No Reg.	Nom. Reg.
NEUT 5.4.0 (LFG _N + $2p2h_N$)	31.6	30.4	3.38	2.60
NEUT 5.3.2.2 (SF + $2p2h_N$ + 2 × FSI)	15.9	14.8	11.0	10.1
NEUT 5.3.2.2 (SF + $2p2h_N$)	31.9	30.3	16.6	15.5
NuWro 11q (SF + $2p2h_N$)	22.6	23.1	16.8	15.6
NuWro 11q (LFG + $2p2h_N$)	81.5	81.7	39.0	15.6
NuWro 11q (LFG + RPA + $2p2h_N$)	78.5	84.4	39.9	36.3
NEUT 5.3.2.2 (SF + $2p2h_N$ + No FSI)	114	112	42.9	41.4
GENIE 2.12.4 (RFG + $2p2h_E$)	92.9	92.4	47.9	47.7
NuWro 11q (SF w/o 2p2h)	65.8	68.7	55.4	54.8
NEUT 5.3.2.2 (SF w/o 2p2h)	93.3	91.5	61.2	59.6
GiBUU 2016 (LFG + $2p2h_G$)	77.0	78.9	66.1	59.6
NuWro 11q (RFG + $2p2h_N$)	150	155	67.2	69.0
NuWro 11q (RFG + RPA + $2p2h_N$)	155	172	68.6	70.4
GENIE 2.12.4 (RFG w/o 2p2h)	94.6	97.8	74.1	76.2

 These numbers are very similar → No change of physics conclusions form regularisation. Important test.

Do I really need a covariance?

Guess which MC fits each data better better?

Do I really need a covariance?

How about now?

Can you do chiby-eye?

Stephen Dolan

Nulnt 2018, GSSI

51_

Chi-by-eye?

Interpreting any result-simulation comparison without a covariance matrix and a goodness of fit is dangerous.

If you really must, then the regularised result is better, but may still be misleading.

If you make a conclusion by eye, check the χ^2 tell the same story.

Stephen Dolan

Nulnt 2018, GSSI

52

But the result looks awfull?

Consider a two bin result:

$$pull_{i} = \frac{N_{fit} - N_{true}}{Error}$$

$$pull_{0} = 3$$

$$pull_{1} = 3$$

$$Fairly awful$$

$$pull_{1} = 3$$

$$\chi^2 = \left(\overline{N_{fit}} - \overline{N_{true}}\right)(V_{cov})^{-1}\left(\overline{N_{fit}} - \overline{N_{true}}\right)$$

$$\chi^2 = 1.69$$
 Good χ^2

Need to see the correlation matrix to tell whether the result is good or not.

But the result looks awful!?

• Consider a two bin result:

$$\chi^2 = 2.0$$
 \rightarrow Worse χ^2

Pulls/bin-to-bin bias doesn't tell the whole story

54

Unfolding at T2K: likelihood fitting

- True bin \rightarrow Reco. template
- Vary MC template norms
 (c_i) and compare to data
- Maximise Poisson likelihood + syst. penalty term (using max. gradient decent)

How does it work?

200

100

0

0

0.5

2

1.5

1

2.5

 $\delta \alpha_{T}$ (radians)

3

T2K

How does it work?

• Scale template weights

T2K

How does it work?

- Overall can alter:
 - Template weights
 - BG Model parameters
 - Flux
 - Detector response

- Alter background systematic parameters
- These should ideally be constrainable by control regions

Nulnt 2018, GSSI

58

How does it work?

Maximise likelihood /

Keep iterating to maximize the likelihood

Regularisation in the likelihood fitter

• The best fit parameters are those that minimise the following:

$$\chi^2 = \chi^2_{stat(fit\,goodness)} + \chi^2_{syst(penalty)} + \chi^2_{re}$$

$$\chi^2_{stat} = \sum_{j}^{recobins} 2(N_j^{MC} - N_j^{obs} + N_j^{obs} ln \frac{N_j^{obs}}{N_j^{MC}})$$

$$\chi^2_{syst} = (\vec{a}^{syst} - \vec{a}^{syst}_{prior})(V^{syst}_{cov})^{-1}(\vec{a}^{syst} - \vec{a}^{syst}_{prior})$$

 With an optional regularisation term (other terms are possible, exact choice of term is beyond the scope of this talk):

$$\chi^2_{reg} = p_{reg} \sum_{i} (c_i - c_{i-1})^2 = p_{reg} (\boldsymbol{c} - \boldsymbol{c}_{prior}) V_{cov}^{reg} (\boldsymbol{c} - \boldsymbol{c}_{prior})$$

