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Unfolding
• Unfolding is a key part of 

cross-section analyses

• It is the process of 
deconvolving detector 
resolution effects from data

• (Almost) all recent results 

which can be compared to 
theory/generator 
predictions are unfolded  

• Unfolding without care can 

bias your result

An over-simplified cross-section analysis
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Unfolding

• Unfolding is finding 𝑈𝑖𝑗 from 𝑆𝑗𝑖.

• Simplest method: use 𝑆𝑗𝑖
−1

𝑅𝑗 = 

𝑇𝑟𝑢𝑒 𝐵𝑖𝑛𝑠,𝑖

𝑆𝑗𝑖 𝑇𝑖

Number of events in reco bin j
Number of events in true bin i

Smearing matrix

𝑇𝑖 = 

𝑅𝑒𝑐𝑜 𝐵𝑖𝑛𝑠,𝑗

𝑈𝑖𝑗𝑅𝑗

Number of events in true bin i Number of events in reco bin j

Unsmearing matrix

• Measure selected number of events in bins of a reconstructed quantity

• Want the total number of signal events in bins of a true quantity

Efficiency correct UnfoldingBkg subtract

Assuming no background
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Toy example - smearing
Gaus (0,0.6) smearTrue Space

Reco. space• 2000 events with bins of width 1.0 

with a “resolution” of 0.6

• Quasi-realistic example 
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Toy example - smearing
Gaus (0,0.6) smearTrue Space

Reco. space

True Space

Reco. space
• Often free to move one bin down 

so long as we move the adjacent 

bins up to compensate*: see 

small changes in the reco. space

• True even with large variations

• Doesn’t bode well for solving the 

inverse problem … 

*This is intuitive: If you 

remove some events 
from a bin you can 
repopulate them with 

the “spill over” from 
the adjacent bins
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Toy example - unfolding
Inverse (Gaus (0,0.6) smear)True Space

Reco. space

Integral = 1

• So the inverse looks fine provided 

that:

• Response in MC is exactly the 

same as the real response

• The reco. MC sim. is identical to 

the real data …
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Toy example - unfolding
Inverse (Gaus (0,0.6) smear)

Reco. space

Integral = 1

• Let’s try a Poisson fluctuation of 

the reco. space!

• HUGE variation in the true space

Reco. spaceReco. space

True Space
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Toy example - unfolding
Inverse (Gaus (0,0.6) smear)True Space

Reco. space

Integral = 1

Reco. space

True Space

• Let’s try another fluctuation

• Same thing … 
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Toy example - unfolding
Inverse (Gaus (0,0.6) smear)True Space

Reco. space

Integral = 1

• Many fluctuations allow us to 

build a result with errors

• In most realistic circumstances 

we get a result which oscillates 
around the truth

• It doesn’t look great

True Space
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Toy example
True Space

• This result is the unregularisedresult, but is it correct? 

• From the correlation matrix we can see that the oscillatory behaviour is 
accompanied by large bin-to-bin anti-correlations.

• In this case, actually find that the 
𝜒2

𝑁𝐷𝑂𝐹
= 0.44, pretty good!

• In fact, if we want to minimise bias this is probably the best thing we 
can do 

Unfolded result 
correlation matrix

True Space
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The unregularised result
• Although the result is absolutely 

correct, it can be almost 
meaningless without the 
accompanying covariance matrix.

• Can you  judge which of the models 
on the left fits the result best?
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The unregularised result
• Although the result is absolutely 

correct, it can be almost 
meaningless without the 
accompanying covariance matrix.

• Can you  judge which of the models 
on the left fits the result best?

• Even when we have the covariance 
matrix “chi-by-eye” is not very 
reliable …  

• The unregularised result is ideal for calculating 𝝌𝟐, but 

potentially very misleading for “by-eye” comparisons.

𝜒1
2/𝐷𝑂𝐹 = 2.7→ 𝑝 = 0.0013

𝜒2
2/𝐷𝑂𝐹 = 1.2→ 𝑝 = 0.25
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Case study: CC analysis

Phys. Rev. D 93, 112012 (2016)

Stat. correlation matrix for these three bins

• Our unregularised ND280 𝜈𝜇𝐶𝐶0𝜋

analysis shows a dip in the momentum 

distribution for forward going muons at 

about 1 GeV

• This had some physicists excited, there 

has been some discussion about what 

this large “dip” could be. 

• But in reality the large anti-correlations 

between the pertinent bins make this

result compatible with no dip. 

• The “dip” may just be a statistical 

effect from the unregularised unfolding
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The case for regularisation

• We might want to have an idea of the result’s shape or to 
compare the model in a specific region of phase-space 

• We can’t accurately estimate the 𝜒2 from a plot in a paper 
or conference 

• Not enough result comparison papers / talks calculate 𝜒2 …

Perhaps producing a result which can be better interpreted 

by eye could be useful too …

Unregularised results with large anti-correlations are the 

best option for making 𝜒2 comparisons, but:



Stephen Dolan NuInt 2018, GSSI 15

Can we just re-bin it?

• Fine binning compared to the detector resolution

• Large statistical uncertainty in the reco. data

The oscillatory unfolded results are caused by a 

combination of:

Gaus (0,0.6) smear

1.0 bin width
2000 events

Gaus (0,0.6) smear

1.5 bin width
2000 events

Gaus (0,0.6) smear

1.0 bins
10000 events

Can we just widen our bins until we get a smooth result?
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Can we just re-bin it?
• Yes! Many of T2K’s recent results do this (see Ciro’s & Dan’s talks)

• This is largely unbiased unfolding where the resolution of the 

detector is clearly shown by the width of the bins

• Potential issues*:

• Bin widths optimised on MC, not on data

• Coarser binning can give greater model dependencies

Phys. Rev. D 98, 012004

Ciro Ricco’s talk

* Although these could be mitigated by first extracting a result in fine bins and then combining adjacent bins until the result is smooth 
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Tikhonov regularisation

• Rather than combining bins completely, another option is 

to loosely tie them together with a penalty term (to be used in 

the likelihood fitting method of cross-section extraction – see backups)

𝜒𝑟𝑒𝑔
2 = 𝑝𝑟𝑒𝑔

𝑖

(𝑏𝑖𝑛𝑖−𝑏𝑖𝑛𝑖−1)
2

• If 𝑝𝑟𝑒𝑔 is very large then this is equivalent to combining bins

• The inclusion of a penalty term means that the result 

moves away from the maximum likelihood solution and is 
therefore at least a little biased. 

• How can we choose 𝑝𝑟𝑒𝑔 to give us a result we can better 

compare to by-eye but avoid excessive bias?

(this is just one potential penalty term, 
others are possible depending on how 
exactly you want to smooth your result) 
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The role of regularisation

Flat input MC
(truth and reco)
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The role of regularisation

Flat input MC
(truth and reco)

Measured 
“data”

Post-fit 
reco result
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The role of regularisation

Flat input MC
(truth and reco)

Measured 
“data”

Post-fit 
reco result

Mock 
data truth

Post-fit 
unfolded result
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The role of regularisation

Read 𝑝𝑟𝑒𝑔 as regularisation strength 
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The role of regularisation

Read 𝑝𝑟𝑒𝑔 as regularisation strength 



Stephen Dolan NuInt 2018, GSSI 23

The role of regularisation

Read 𝑝𝑟𝑒𝑔 as regularisation strength 
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The role of regularisation

Read 𝑝𝑟𝑒𝑔 as regularisation strength 
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Regularisation optimisation: The L-curve

𝜒2 of fit

“
S
p
ik

y
-n

e
ss

”
 o

f 
re

su
lt



𝑖

(𝑏𝑖𝑛𝑖−𝑏𝑖𝑛𝑖−1)
2 =

𝜒𝑟𝑒𝑔
2

𝑝𝑟𝑒𝑔

The quantity we want 

to minimise with our 
regularisation 

This is a measure of bias – basically the 
deviation from the unregularised result 
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Regularisation optimisation: The L-curve

• Balance 

regulation with 
bias by choosing 

the “kink” in the 
curve

• L-curve can be 
formed on real 

data – data driven 
regularisation

http://arxiv.org/pdf/1205.6201v4.pdf - use in TUnfold
http://epubs.siam.org/doi/abs/10.1137/1034115

http://epubs.siam.org/doi/abs/10.1137/0914086

• Well established statistical method to select the smoothest 

of many almost degenerate solutions:

𝜒2 of fit
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http://arxiv.org/pdf/1205.6201v4.pdf
http://epubs.siam.org/doi/abs/10.1137/1034115
http://epubs.siam.org/doi/abs/10.1137/0914086
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Case study: CC0 in 
• Measure CC0𝜋+protons cross section in missing transverse 

momentum (𝛿𝑝𝑇) 

• Unregularised best for 𝜒2, regularised best for actually 

showing anywhere

𝑝𝑟𝑒𝑔 = 3.0

L-Curve
Unregularised

Unregularised

Regularised

Regularised

Correlation matrix
Correlation matrix

Phys. Rev. D 98, 032003 (2018)
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Case study: CC0 in 
• Measure CC0𝜋+protons cross section in missing transverse 

momentum (𝛿𝑝𝑇) 

• Unregularised best for 𝜒2, regularised best for actually 

showing anywhere

𝑝𝑟𝑒𝑔 = 3.0

L-Curve
Unregularised

Unregularised

Regularised

Regularised

Correlation matrix
Correlation matrix

• CAUTION: here we can see that whilst the unregularised result has reduced 
correlations, interpreting a goodness of fit by eye is still challenging. 

• You still need a covariance for a regularised result!

Careful regularisation: 
Physics conclusions unchanged between 

the regularised and unregularised results

Phys. Rev. D 98, 032003 (2018)
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D’Agostini’s method
• Using Bayes’ theorem* to form unsmearing matrix: 

• Most commonly used method (MINERvA, MiniBooNE, T2K)

• If prior formed from MC - model dependence is explicit

• Mitigate by updating prior with unfolded result and iterating

• Many iterations (typically hundreds / thousands) → unregularised result

*Although this method uses Bayes’ theorem, it is not a 
Bayesian technique (in fact it’s equivalent to the widely-
used “Expectation-maximisation algorithm”) [M.Kuusela]   

http://lib.tkk.fi/Dipl/2012/urn100641.pdf
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D’Agostini’s method
• Using Bayes’ theorem* to form unsmearing matrix: 

• Changing the number of iterations can change physics conclusions

• Typically select number of iterations based on mock-data studies

• If real data looks different, can select “wrong” number (toy example in backups)

• Benjamin will show this with a real analysis, presents a data-driven alternative

Few iterations ≡big 𝑝𝑟𝑒𝑔

??? iterations

Many iterations≡small 𝑝𝑟𝑒𝑔

See talk from Benjamin Quilain

*Although this method uses Bayes’ theorem, it is not a 
Bayesian technique (in fact it’s equivalent to the widely-
used “Expectation-maximisation algorithm”) [M.Kuusela]   

But how many is n?

http://lib.tkk.fi/Dipl/2012/urn100641.pdf
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Efficiency corrections
• After unfolding we have the 

a measure of the true 
number of selected signal 

events

• To get to a cross section,  

we need to correct for our  
detectors acceptance 

• It’s also easy to add bias 
here …

• Not entirely separate from 
unfolding
• Unfolding in too few 

variables can give bias here

An over-simplified xsec analysis

For more details: arXiv 1805.07378 (TENSIONS Workshop 2016)
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Toy example
• I want to measure a cross section in some range of proton momentum 

• But my detection efficiency depends on both proton momentum 
and angle (and on other particles, but let’s focus on the angle for the moment!)

• I can’t know the efficiency (𝜖) without knowing the distribution of 
proton angle within the bin

𝜖 =? ? ?
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Toy example

• The efficiency in the momentum bin a convolution of the efficiency 
and the predicted cross section

• I want to measure a cross section in some range of proton momentum 
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Toy example

• The efficiency in the momentum bin a convolution of the efficiency 
and the predicted cross section

• Compared to GiBUU, GENIE predicts a higher cross section in the high 
efficiency region → GENIE predicts a higher (~5-10%) efficiency

• Efficiency depends on the input model → Bias 

GENIE predicts a 
higher 𝜖 than GiBUU!

• I want to measure a cross section in some range of proton momentum 



• In this case the shape of the input model doesn’t alter the efficiency →
model independent correction!

• T2K analyses try to ensure integration only over flat-efficiencies in 
observables where simulations have poor predictive power (Example in backups)
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Kinematic constraints
• Placing kinematic constraints on outgoing particles (𝑝𝜇,𝑝, 𝜃𝜇,𝑝) can 

leave us with a relatively flat efficiency in a specific region of cos𝜃𝑝

𝜖 = 30%

𝑝𝜇 > 250 𝑀𝑒𝑉

𝑐𝑜𝑠𝜃𝑝 > 0.4

𝑐𝑜𝑠𝜃𝜇 > −0.6
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Summary

36

✓ Gives correct 𝜒2 with no unfolding bias

X Potentially useless for anything other than 𝜒2 without corresponding 

covariance, and even then we can’t trust “chi-by-eye”

➢ Useful part of data release and as a reference to check bias of 

regularised results

Regularisation
✓ Smoother results, easier to interpret

X Adds at least some bias – worse for getting reliable 𝜒2

➢ Not easy to choose a regularisation strength that suits data based on MC 

→ Use data-driven methods

Unregularised Result

• Unfolding / efficiency correcting without bias is hard – but our 
analyses have some innovative ways to mitigate the problem

• All methods (not just on T2K) give results with some correlations 
• 𝜒2 (or similar) is usually essential to validate physics conclusions
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Just don’t unfold!

• Producing an unfolded result that can be interpreted 

by-eye with is hard! But maybe there’s another way …

Data

Theorist’s 
new model

Unfolded 
Result

Reco Level

Truth Level

Sounds easy! 

Right, Lukas…?
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Thank you for listening

38
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Efficiency correction example
Phys. Rev. D 98, 032003

• Measuring 𝛿𝑝𝑇 relies on integrating the efficiency over 𝑝𝜇,𝑝, 𝜃𝜇,𝑝

• We set kinematic constraints in each to keep efficiency relatively 
flat, especially in regions of phase space where models have low 
predictive power (proton kinematics)

• Still not perfect, ideally should efficiency correct in all relevant 
kinematics

Errors are only simulat ion stat istics Circles: post kinematic constraints
Squares: pre kinematic constraints
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D’Agostini’s method
• Using Bayes’ theorem* to form unsmearing matrix: 

𝑈𝑖𝑗 =
𝑃𝑟𝑒𝑙 𝑟𝑗 𝑡𝑖 𝑃0(𝑡𝑖)

σ
𝑖=1
𝑖=𝑁𝑡𝑃 𝑟𝑗 𝑡𝑖 𝑃0(𝑡𝑖)

𝑃 𝑟𝑗 𝑡𝑖 = 𝑁𝑖𝑗
𝑀𝐶/𝑇𝑖

𝑀𝐶

𝑃𝑟𝑒𝑙 𝑟𝑗 𝑡𝑖 =
𝑃 𝑟𝑗 𝑡𝑖

σ
𝑗=1

𝑗=𝑁𝑟 𝑁𝑖𝑗
𝑀𝐶/𝑇𝑖

𝑀𝐶

𝑃0 𝑡𝑖 =
𝑇𝑖
𝑃𝑟𝑖𝑜𝑟

σ
𝑖=1

𝑖=𝑁𝑡 𝑇𝑖
𝑃𝑟𝑖𝑜𝑟

Smearing Matrix

MC Prior

𝑁𝑖𝑗 - number of events in true bin i and reco bin j 

𝑇𝑖 - number of events in true bin i
𝑟𝑗/𝑡𝑖 - reco/true bin j/i

• Most commonly used method (MINERvA, MiniBooNE, T2K)

• If prior formed from MC (as it typically is), model dependence is explicit

• Mitigate by updating prior with unfolded result and iterating

• Many iterations (typically many hundreds / thousands) → unregularised result

Unsmearing Matrix

*Although this method uses Bayes’ theorem, it 
is not a Bayesian technique (in fact it’s 
equivalent to the widely-used “Expectation-
maximisation algorithm”) [M.Kuusela]   

But typically this is 
not provided for 

D’Agostini-based 

analyses … 

http://lib.tkk.fi/Dipl/2012/urn100641.pdf
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How many iterations? – Choose via MC

500 iterations (~unreg)

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 12,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 26

Gaus (0.1,1.0) smear,1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

50 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 18,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 27
4 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 299,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 212
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How many iterations? – Choose via MC

500 iterations (~unreg)

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 12,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 26

Gaus (0.1,1.0) smear,1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

50 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 18,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 27
4 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 299,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 212

• 50 iterations seems like a good choice here.

Too many iterations and we get an oscillating (but correct) result, 

too few and we bias to the input 
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How many iterations? – Choose via MC

2000 iterations (~unreg)

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 2.9,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 134

Gaus (0.1,1.0) smear,1.0 bin width, 2000 events, Truth is a Gaus(0,2.0), Input is a BW(0.3,2.5)

50 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 32,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 254
4 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 9606,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 1568
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How many iterations? – Choose via MC

2000 iterations (~unreg)

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 2.9,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 134

Gaus (0.1,1.0) smear,1.0 bin width, 2000 events, Truth is a Gaus(0,2.0), Input is a BW(0.3,2.5)

50 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 32,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 254
4 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 9606,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 1568

A (small) change to the modelled truth and 50 iterations doesn’t seem so good!
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How many iterations? – Choose via MC

2000 iterations (~unreg)

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 2.9,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 134

Gaus (0.1,1.0) smear,1.0 bin width, 2000 events, Truth is a Gaus(0,2.0), Input is a BW(0.3,2.5)

50 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 32,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 254
4 iterations 

𝜒𝑡𝑟𝑢𝑡ℎ
2 = 9606,𝜒𝑖𝑛𝑝𝑢𝑡

2 = 1568

• Too few iterations can give a result which looks okay but is 

actually biased to the shape of the input 

• Adjacent bins are correlated, even though we binned 
close to our detector resolution 

• Early termination of D’Agostini can give unrealistically   
small errors

First test for this: Check that the 𝝌𝟐 preference in model 

comparisons is similar to the unregularised results

• Changing the number of iterations can change physics 

conclusions

• MC-driven methods of optimising the number of iterations 
(esp. without the above test) are dangerous → can easily 

get a biased result if the prior used was far from the truth.
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How many iterations? – Choose via data

• Similar approach to L-Curve: 
• Balance the impact of the smoothing (Y)

• With the distance to the unregularised result (X)

Too many iterations

Too few𝜒𝑛
2 = 

𝑏𝑖𝑛 𝑖,𝑗

𝑁𝑖
𝑛−𝑁𝑖

∞ 𝐶𝑜𝑣𝑛 −1(𝑁𝑗
𝑛− 𝑁𝑗

∞)

𝑛 – num. iterations 𝑁 – num. unfolded signal events𝐶𝑜𝑣 – covariance matrix

(Use some suitably large number in place of ∞)

Case Study: On-axis CC1π measurement

• To mitigate this issue two recent T2K analyses utilising D’Agostini’s
method employ a data-driven regularisation 

𝜒𝑛
2

About right

• Number of iterations chosen via fake data: 3 – 7

• Number of interactions chosen via data: 16

See talk from 
Benjamin Quilain
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What if my L-curve isn’t L-shaped?

𝜒2 of fit

“
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ltIs the condition on the Y-

axis reasonable?

• If the form of the 

penalty pushes the 

result somewhere that is 

incompatible with the 
no regularisation case, 

the drop on the y-axis 

can be limited to very 
small values of 𝑝𝑟𝑒𝑔

How did you form the x-axis?

• This needs to be a measure of bias. 

What is the first value on the x-axis?
• How does this compare with the x-axis value of the unregulairsed result? If 

they’re very different consider smaller 𝑝𝑟𝑒𝑔
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Aesthetic regularisation
• A result with a carefully chosen regularisation strength 

shouldn’t significantly alter the physics conclusions with 
respect to the unregularised case – it’s just aesthetic.
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Unregularised result as a reference 

for regularised result bias

• These numbers are very similar → No change of physics conclusions form 

regularisation. Important test. Phys. Rev. D 98, 032003
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Do I really need a covariance?
Guess which MC fits 

each data better 

better?

Example by L. Pickering 
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Do I really need a covariance?
How about now?

Can you do chi-

by-eye?

Example by L. Pickering 
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Chi-by-eye?
Interpreting any 

result-simulation 

comparison without 

a covariance matrix 

and a goodness of 
fit is dangerous. 

If you really must, 

then the regularised 

result is better, but 
may still be 

misleading. 

If you make a 

conclusion by eye, 
check the 𝜒2 tell 

the same story. 

Example by L. Pickering 
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But the result looks awful!?

−0.95

−0.95

1.0

1.0

• Consider a two bin result:

𝑝𝑢𝑙𝑙0 = 3

𝑝𝑢𝑙𝑙1 = 3
Fairly awful 
pull

𝜒2 = 𝑁𝑓𝑖𝑡− 𝑁𝑡𝑟𝑢𝑒 𝑉𝑐𝑜𝑣
−1 𝑁𝑓𝑖𝑡 −𝑁𝑡𝑟𝑢𝑒

𝜒2 =1.69

Truth
Result

Good 𝝌𝟐

• Need to see the correlation 

matrix to tell whether the 
result is good or not.
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But the result looks awful!?

0.0

0.0

1.0

1.0

• Consider a two bin result:

𝑝𝑢𝑙𝑙0 = 1

𝑝𝑢𝑙𝑙1 = 1
Better pull

𝜒2 = 𝑁𝑓𝑖𝑡− 𝑁𝑡𝑟𝑢𝑒 𝑉𝑐𝑜𝑣
−1 𝑁𝑓𝑖𝑡 −𝑁𝑡𝑟𝑢𝑒

𝜒2 = 2.0

Truth
Result

Worse 𝝌𝟐

• Pulls/bin-to-bin bias doesn’t 

tell the whole story



T𝑟𝑢𝑡ℎ

𝑅𝑒𝑐𝑜7

𝑅𝑒𝑐𝑜11

Stephen Dolan NuInt 2018, GSSI 55

Unfolding at T2K: likelihood fitting
• True bin → Reco. template

• Vary MC template norms 
(𝑐𝑖) and compare to data

• Maximise Poisson 

likelihood + syst. 
penalty term        
(using max. gradient decent)
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How does it work?
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How does it work?

• Scale template weights
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How does it work?
• Alter background systematic 

parameters

• These should ideally  be 
constrainable by control 
regions

• Overall can alter:

• Template weights
• BG Model parameters

• Flux
• Detector response
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How does it work?

• Keep iterating to 

maximize the likelihood

• Maximise likelihood / 

minimise −2 l𝑛 𝐿 ≈ 𝜒2
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Regularisation in the likelihood fitter
• The best fit parameters are those that minimise the 

following:

• With an optional regularisation term (other terms are possible, 

exact choice of term is beyond the scope of this talk):


