$\mathrm{I} 2 \mathbb{K}$

What we measure when we measure σ

Cross-section extraction techniques at T2K
Stephen Dolan
For the T2K Collaboration
Stephen.Dolan@llr.in2p3.fr

Physique des 2 Infinis et des Origines

Unfolding

An over-simplified cross-section analysis

- Unfolding is a key part of cross-section analyses
- It is the process of deconvolving detector resolution effects from data
- (Almost) all recent results which can be compared to theory/generator predictions are unfolded
- Unfolding without care can bias your result

Unfolding

- Measure selected number of events in bins of a reconstructed quantity Efficiency correct
- Want the total number of signal events in bins of a true quantity

Assuming no background

Number of events in recon bin j

$$
\left.R_{j}\right)=\sum_{\text {True Bins, } i}\left(S_{j i}\left(T_{i}\right)\right. \text { Number of events in true bin i }
$$

Number of events in true bin i

$$
\rightarrow T_{i}=\sum_{\text {Reco Bins,j}} \underbrace{}_{\text {Unsmearing matrix }} \quad \text { Number of events in reco bin } \mathrm{j}
$$

- Unfolding is finding $U_{i j}$ from $S_{j i}$.
- Simplest method: use $S_{j i}^{-1}$

```
Toy example - smearing
```



```
- 2000 events with bins of width 1.0 with a "resolution" of 0.6
- Quasi-realistic example
Gaus \((0,0.6)\) smear
```



```
Toy example - smearing
```



```
- Often free to move one bin down so long as we move the adjacent bins up to compensate*: see small changes in the reco. space
- True even with large variations
- Doesn't bode well for solving the inverse problem ...
```

Gaus $(0,0.6)$ smear

- So the inverse looks fine provided that:
- Response in MC is exactly the same as the real response
- The reco. MC sim. is identical to ${ }^{\frac{2}{2}}$ the real data ...

Toy example

- This result is the unregularised result, but is it correct?
- From the correlation matrix we can see that the oscillatory behaviour is accompanied by large bin-to-bin anti-correlations.
- In this case, actually find that the $\frac{\chi^{2}}{N D O F}=0.44$, pretty good!
- In fact, if we want to minimise bias this is probably the best thing we can do

The unregularised result

- Although the result is absolutely correct, it can be almost meaningless without the accompanying covariance matrix.
- Can you judge which of the models on the left fits the result best?

The unregularised result

- Although the result is absolutely correct, it can be almost meaningless without the accompanying covariance matrix.
- Can you judge which of the models on the left fits the result best?
- Even when we have the covariance matrix "chi-by-eye" is not very reliable...
- The unregularised result is ideal for calculating χ^{2}, but potentially very misleading for "by-eye" comparisons.

Case study: CC0 π analysis

$0.98<$ true $\cos \theta_{\mu}<1.00$

- Our unregularised ND280 $v_{\mu} C C 0 \pi$ analysis shows a dip in the momentum distribution for forward going muons at about 1 GeV
- This had some physicists excited, there has been some discussion about what this large "dip" could be.
- But in reality the large anti-correlations between the pertinent bins make this result compatible with no dip.
- The "dip" may just be a statistical effect from the unregularised unfolding

Stat. correlation matrix for these three bins

The case for regularisation

 Unregularised results with large anti-correlations are the best option for making χ^{2} comparisons, but:- We might want to have an idea of the result's shape or to compare the model in a specific region of phase-space
- We can't accurately estimate the χ^{2} from a plot in a paper or conference
- Not enough result comparison papers / talks calculate χ^{2}...

Perhaps producing a result which can be better interpreted by eye could be useful too ...

Can we just re-bin it?

The oscillatory unfolded results are caused by a combination of:

- Fine binning compared to the detector resolution
- Large statistical uncertainty in the reco. data

Can we just widen our bins until we get a smooth result?

Can we just re-bin it?

- Yes! Many of T2K's recent results do this (see Ciro's \& Dan's talks)
- This is largely unbiased unfolding where the resolution of the detector is clearly shown by the width of the bins
- Potential issues*:
- Bin widths optimised on MC, not on data
- Coarser binning can give greater model dependencies

Tikhonov regularisation

- Rather than combining bins completely, another option is to loosely tie them together with a penalty term (to be used in the likelihood fitting method of cross-section extraction-see backups)

$$
\chi_{\text {reg }}^{2}=p_{\text {reg }} \sum_{i}\left(b i n_{i}-b i i_{i-1}\right)^{2}
$$

(this is just one potential penalty term, others are possible depending on how exactly you want to smooth your result)

- If $p_{\text {reg }}$ is very large then this is equivalent to combining bins
- The inclusion of a penalty term means that the result moves away from the maximum likelihood solution and is therefore at least a little biased.
- How can we choose $p_{\text {reg }}$ to give us a result we can better compare to by-eye but avoid excessive bias?

The role of regularisation

Flat input MC (truth and reco)

The role of regularisation

Flat input MC (truth and reco)

The role of regularisation

Flat input MC (truth and reco)

The role of regularisation

Read $p_{\text {reg }}$ as regularisation strength

The role of regularisation

Read $p_{\text {reg }}$ as regularisation strength

The role of regularisation

Read $p_{\text {reg }}$ as regularisation strength

The role of regularisation

Read $p_{\text {reg }}$ as regularisation strength

Regularisation optimisation: The L-curve

$\sum_{i}\left(\operatorname{bin}_{i}-\operatorname{bin}_{i-1}\right)^{2}=\frac{\chi_{r e g}^{2}}{p_{r e g}}$

This is a measure of bias - basically the deviation from the unregularised result

Regularisation optimisation: The L-curve

- Balance regulation with bias by choosing the "kink" in the curve
- L-curve can be formed on real data - data driven regularisation

- Well established statistical method to select the smoothest of many almost degenerate solutions:

Case study: CCO π in δp_{T}

- Measure CCO $\pi+$ protons cross section in missing transverse momentum (δp_{T})

Phys. Rev. D 98, 032003 (2018)

- Unregularised best for χ^{2}, regularised best for actually showing anywhere

Case study: CCO π in δp_{T}

- Measure CCO $\pi+$ protons cross section in missing transverse momentum (δp_{T})
- Unregularised best for χ^{2}, regularised best for actually showing anywhere

D'Agostini's method

- Using Bayes' theorem* to form unsmearing matrix:

- Most commonly used method (MINERvA, MiniBooNE, T2K)
- If prior formed from MC - model dependence is explicit
- Mitigate by updating prior with unfolded result and iterating
- Many iterations (typically hundreds / thousands) \rightarrow unregularised result

D'Agostini's method

- Using Bayes' theorem* to form unsmearing matrix:

Few iterations \equiv big $p_{\text {reg }}$
Selection model
Prior model
Data

??? iterations

Prior model

Smearing matrix (detector response)

- Changing the number of iterations can change physics conclusions
- Typically select number of iterations based on mock-data studies
- If real data looks different, can select "wrong" number (toy example in backups)
- Benjamin will show this with a real analysis, presents a data-driven alternative

Efficiency corrections

An over-simplified xsec analysis

- After unfolding we have the a measure of the true number of selected signal events
- To get to a cross section, we need to correct for our detectors acceptance
- It's also easy to add bias here ...
- Not entirely separate from unfolding
- Unfolding in too few
variables can give bias here

For more details: arXiv 1805.07378 (TENSIONS Workshop 2016)

Toy example

- I want to measure a cross section in some range of proton momentum

- But my detection efficiency depends on both proton momentum and angle (and on other particles, but let's focus on the angle for the moment!)
- I can't know the efficiency (ϵ) without knowing the distribution of proton angle within the bin

Toy example

- I want to measure a cross section in some range of proton momentum

- The efficiency in the momentum bin a convolution of the efficiency and the predicted cross section

Toy example

- I want to measure a cross section in some range of proton momentum

- The efficiency in the momentum bin a convolution of the efficiency and the predicted cross section
- Compared to GiBUU, GENIE predicts a higher cross section in the high efficiency region \rightarrow GENIE predicts a higher ($\sim 5-10 \%$) efficiency
- Efficiency depends on the input model \rightarrow Bias

Kinematic constraints

- Placing kinematic constraints on outgoing particles ($p_{\mu, p}, \theta_{\mu, p}$) can leave us with a relatively flat efficiency in a specific region of $\cos \theta_{p}$

- In this case the shape of the input model doesn't alter the efficiency \rightarrow model independent correction!
- T2K analyses try to ensure integration only over flat-efficiencies in observables where simulations have poor predictive power (Example in backups)

Summary

- Unfolding / efficiency correcting without bias is hard - but our analyses have some innovative ways to mitigate the problem
- All methods (not just on T2K) give results with some correlations
- χ^{2} (or similar) is usually essential to validate physics conclusions

Unregularised Result

\checkmark Gives correct χ^{2} with no unfolding bias
X Potentially useless for anything other than χ^{2} without corresponding covariance, and even then we can't trust "chi-by-eye"
> Useful part of data release and as a reference to check bias of regularised results

Regularisation

\checkmark Smoother results, easier to interpret
X Adds at least some bias - worse for getting reliable χ^{2}
> Not easy to choose a regularisation strength that suits data based on MC \rightarrow Use data-driven methods

Just don'† unfold!

- Producing an unfolded result that can be interpreted by-eye with is hard! But maybe there's another way ...

Reco Level

Truth Level

Sounds easy!
Right, Lukas...?

Thank you for listening

Efficiency correction example

- Measuring δp_{T} relies on integrating the efficiency over $p_{\mu, p}, \theta_{\mu, p}$
- We set kinematic constraints in each to keep efficiency relatively flat, especially in regions of phase space where models have low predictive power (proton kinematics)
- Still not perfect, ideally should efficiency correct in all relevant kinematics

D'Agostini's method

*Although this method uses Bayes' theorem, it is not a Bayesian technique (in fact it's equivalent to the widely-used "Expectationmaximisation algorithm") [M.Kuusela]

- Using Bayes' theorem* to form unsmearing matrix:
$N_{i j}$ - number of events in true bin i and reco bin j
T_{i} - number of events in true bin i

$$
\begin{aligned}
& P\left(r_{j} \mid t_{i}\right)=N_{i j}^{M C} / T_{i}^{M C} \\
& P_{r e l}\left(r_{j} \mid t_{i}\right)=\frac{P\left(r_{j} \mid t_{i}\right)}{\sum_{j=1}^{j=N_{r}} N_{i j}^{M C} / T_{i}^{M C}} \\
& P_{0}\left(t_{i}\right)=\frac{T_{i}^{\text {Prior }}}{\sum_{i=1}^{i=N_{t}} T_{i}^{\text {Prior }}}
\end{aligned}
$$

r_{j} / t_{i} - reco/true bin j / i

- Most commonly used method (MINERvA, MiniBooNE,T2K)
- If prior formed from MC (as it typically is), model dependence is explicit
- Mitigate by updating prior with unfolded result and iterating
- Many iterations (typically many hundreds / thousands) \rightarrow unregularised result

How many iterations? - Choose via MC

Gaus ($0.1,1.0$) smear, 1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

500 iterations (~unreg)

$$
\chi_{\text {truth }}^{2}=12, \chi_{\text {input }}^{2}=26
$$

50 iterations
$\chi_{\text {truth }}^{2}=18, \chi_{\text {input }}^{2}=27$

Nulnt 2018, GSSI
41

How many iterations? - Choose via MC

Gaus ($0.1,1.0$) smear, 1.0 bin width, 2000 events, Truth is a BW(0.4,3.0), Input is a BW(0.3,2.5)

500 iterations (~unreg)

$$
\chi_{\text {truth }}^{2}=12, \chi_{\text {input }}^{2}=26
$$

50 iterations
$\chi_{\text {truth }}^{2}=18, \chi_{\text {input }}^{2}=27$

4 iterations
$\chi_{\text {truth }}^{2}=299, \chi_{\text {input }}^{2}=212$

Too many iterations and we get an oscillating (but correct) result, too few and we bias to the input

- 50 iterations seems like a good choice here.

How many iterations? - Choose via MC

Gaus ($0.1,1.0$) smear, 1.0 bin width, 2000 ev ents, Truth is a Gaus(0,2.0), Input is a BW(0.3,2.5)

2000 iterations (~unreg) $\chi_{\text {truth }}^{2}=2.9, \chi_{\text {input }}^{2}=134$

50 iterations
$\chi_{\text {truth }}^{2}=32, \chi_{\text {input }}^{2}=254$

4 iterations
$\chi_{\text {truth }}^{2}=9606, \chi_{\text {input }}^{2}=1568$

How many iterations? - Choose via MC

Gaus ($0.1,1.0$) smear, 1.0 bin width, 2000 ev ents, Truth is a Gaus($0,2.0$), Input is a BW(0.3,2.5)

How many iterations? - Choose via MC

Gaus ($0.1,1.0$) smear, 1.0 bin width, 2000 ev ents, Truth is a Gaus($0,2.0$), Input is a BW(0.3,2.5)

- Too few iterations can give a result which looks okay but is actually biased to the shape of the input
- Adjacent bins are correlated, even though we binned close to our detector resolution
- Early termination of D'Agostini can give unrealistically small errors

First test for this: Check that the χ^{2} preference in model comparisons is similar to the unregularised results

2000 iterations $(\sim$ unreg $)$	50 iterations
$\chi_{\text {truth }}^{2}=2.9, \chi_{\text {input }}^{2}=134$	$\chi_{\text {truth }}^{2}=32, \chi_{\text {input }}^{2}=254$

- Changing the number of iterations can change physics conclusions
- MC-driven methods of optimising the number of iterations (esp. without the above test) are dangerous \rightarrow can easily get a biased result if the prior used was far from the truth.

How many iterations? - Choose via data

- To mitigate this issue two recent T2K analyses utilising D'Agostini's method employ a data-driven regularisation
- Similar approach to L-Curve:
- Balance the impact of the smoothing (Y)
- With the distance to the unregularised result $(X){ }_{1.5}{ }^{2}$. About right

$$
\begin{aligned}
& n \text {-num. iterations } \operatorname{Cov} \text {-covariance matrix } N \text {-num. unfolded signal events }
\end{aligned}
$$

Case Study: On-axis CCl $п$ measurement

- Number of iterations chosen via fake data: 3-7
- Number of interactions chosen via data: 16

See talk from
Benjamin Quilain

What if my L-curve isn'† L-shaped?

 Is the condition on the Y axis reasonable?- If the form of the penalty pushes the result somewhere that is incompatible with the no regularisation case, the drop on the y-axis can be limited to very small values of $p_{\text {reg }}$

How did you form the x-axis?

- This needs to be a measure of bias.
χ^{2} of fit

What is the first value on the x-axis?

- How does this compare with the x-axis value of the unregulairsed result? If they're very different consider smaller $p_{\text {reg }}$

Aesthetic regularisation

- A result with a carefully chosen regularisation strength shouldn't significantly alter the physics conclusions with respect to the unregularised case - it's just aesthetic.

Unregularised result as a reference for regularised result bias

TABLE IX. The full and shape-only χ^{2} comparisons to the δp_{T} result with nominal and no regularization. The table is ordered by the size of the no-regularization shape-only χ^{2}. More details of these models can be found in Sec. IVA.

Generator	Full		Shape Only	
	No Reg.	Nom. Reg.	No Reg.	Nom. Reg.
NEUT 5.4.0 $\left(\mathrm{LFG}_{N}+2 p 2 h_{N}\right)$	31.6	30.4	3.38	2.60
NEUT 5.3.2.2 (SF $\left.+2 p 2 h_{N}+2 \times \mathrm{FSI}\right)$	15.9	14.8	11.0	10.1
NEUT 5.3.2.2 ($\mathrm{SF}+2 p 2 h_{N}$)	31.9	30.3	16.6	15.5
NuWro 11q (SF $+2 p 2 h_{N}$)	22.6	23.1	16.8	15.6
NuWro 11q (LFG $+2 p 2 h_{N}$)	81.5	81.7	39.0	15.6
NuWro 11q (LFG + RPA $+2 p 2 h_{N}$)	78.5	84.4	39.9	36.3
NEUT 5.3.2.2 (SF $+2 p 2 h_{N}+$ No FSI)	114	112	42.9	41.4
GENIE 2.12.4 (RFG $+2 p 2 h_{E}$)	92.9	92.4	47.9	47.7
NuWro 11q (SF w/o 2p2h)	65.8	68.7	55.4	54.8
NEUT 5.3.2.2 (SF w/o 2p2h)	93.3	91.5	61.2	59.6
GiBUU 2016 (LFG + $2 p 2 h_{G}$)	77.0	78.9	66.1	59.6
NuWro 11q (RFG $+2 p 2 h_{N}$)	150	155	67.2	69.0
NuWro 11q (RFG + RPA $+2 p 2 h_{N}$)	155	172	68.6	70.4
GENIE 2.12.4 (RFG w/o 2p2h)	94.6	97.8	74.1	76.2

- These numbers are very similar \rightarrow No change of physics conclusions form regularisation. Important test.

Phys. Rev. D 98, 032003

Do I really need a covariance?

Do I really need a covariance?

How about now?
Can you do chi-by-eye?

Chi-by-eye?

Interpreting any result-simulation comparison without a covariance matrix and a goodness of fit is dangerous.

If you really must, then the regularised result is better, but may still be misleading.

If you make a conclusion by eye, check the χ^{2} tell the same story.

But the result looks awful!?

- Consider a two bin result:

$$
\begin{aligned}
& \operatorname{pull}_{i}=\frac{N_{\text {fit }}-N_{\text {true }}}{\text { Error }} \\
& \text { pull }_{0}=3 \\
& \text { pull } \left._{1}=3\right] \text { pairly awful }
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{2}=\left(\overline{N_{f i t}}-\overline{N_{\text {true }}}\right)\left(V_{\text {cov }}\right)^{-1}\left(\overline{N_{f i t}}-\overline{N_{\text {true }}}\right) \\
& \left.\chi^{2}=1.69\right\} \text { Good } \chi^{2}
\end{aligned}
$$

- Need to see the correlation matrix to tell whether the result is good or not.

But the result looks awful!?

- Consider a two bin result:

pull $_{i}=\frac{N_{\text {fit }}-N_{\text {true }}}{\text { Error }}$

$$
\begin{aligned}
& \operatorname{pull}_{0}=1 \\
& \text { pull }_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{2}=\left(\overline{N_{\text {fit }}}-\overline{N_{\text {true }}}\right)\left(V_{\text {cov }}\right)^{-1}\left(\overline{N_{\text {fit }}}-\overline{N_{\text {truu }}}\right) \\
& \left.\chi^{2}=2.0\right\} \text { Worse } \chi^{2}
\end{aligned}
$$

- Pulls/bin-to-bin bias doesn't tell the whole story

Unfolding at T2K: likelihood fitting

- True bin \rightarrow Reco. template
- Vary MC template norms $\left(c_{i}\right)$ and compare to data
- Maximise Poisson likelihood + syst. penalty term (using max. gradient decent)

How does it work?

How does it work?

- Scale template weights

How does it work?

- Overall can alter:
- Template weights
- BG Model parameters
- Flux
- Detector response

- Alter background systematic parameters
- These should ideally be constrainable by control regions

How does it work?

Regularisation in the likelihood fitter

- The best fit parameters are those that minimise the following:

$$
\chi^{2}=\chi_{\text {stat }(\text { fit goodness })}^{2}+\chi_{\text {syst }(\text { penalty })}^{2}+\chi_{\text {reg }}^{2} .
$$

$$
\chi_{\text {stat }}^{2} \sum_{j}^{\text {reoobins }} 2\left(N_{j}^{M C}-N_{j}^{\text {obs }}+N_{j}^{\text {obs }} \ln \frac{N_{j}^{\text {obs }}}{N_{j}^{M C}}\right)
$$

$$
\chi_{\text {syst }}^{2}=\left(\vec{a}^{\text {syst }}-\vec{a}_{\text {prior }}^{\text {syst }}\right)\left(V_{\text {cov }}^{\text {syst }}\right)^{-1}\left(\vec{a}^{\text {syst }}-\vec{a}_{\text {prior }}^{\text {syst }}\right)
$$

- With an optional regularisation term (other terms are possible. exact choice of term is beyond the scope of this talk):

$$
\chi_{\text {reg }}^{2}=p_{\text {reg }} \sum_{i}\left(c_{i}-c_{i-1}\right)^{2}=p_{\text {reg }}\left(\boldsymbol{c}-\boldsymbol{c}_{\text {prior }}\right) V_{\text {cov }}^{\text {reg }}\left(\boldsymbol{c}-\boldsymbol{c}_{\text {prior }}\right)
$$

