## Impact of final state interactions on neutrino-nucleon pion production cross sections extracted from neutrino-deuteron reaction data

Satoshi Nakamura

Universidade Cruzeiro do Sul, Brazil

Collaborators: H. Kamano (KEK), T. Sato (Osaka U.)

Introduction

Neutrino experiments need neutrino-nucleus pion production model



 $v_{\mu} CH \rightarrow \mu \pi^{\pm} X$ 

 $\langle E_{v} \rangle = 4.0 \text{ GeV}, W < 1.4 \text{ GeV}$ 

MINERvA PRD 92 (2015)

 $\rightarrow$  Model goes into analysis of oscillation data

An essential ingredient of neutrino-nucleus model : elementary neutrino-nucleon model

We are still in a process of establishing the elementary neutrino-nucleon pion production model

Precision era of neutrino experiments (CP, mass hierarchy)  $\rightarrow$  models of comparable quality

Theoretical description of elementary process in resonance region (single pion productions)

**Resonance excitations** 

Non-resonant mechanisms



Dominant  $\Delta(1232)$ -excitation and sub-leading non-resonant mechanisms

- Accurate determination of  $N-\Delta(1232)$  transition strength is of vital importance
- Experimental inputs are needed to examine pion production mechanisms

Vector current : photon- and electron-nucleon  $1\pi$  production data Axial current : neutrino-nucleon  $1\pi$  production data

## Neutrino interaction data in $\Delta(1232)$ region



- ALL models fit this data by adjusting  $g_{AN\Delta}$ 
  - $\rightarrow$  very important data
- Discrepancy between BNL & ANL data
  - → theoretical uncertainty in neutrino-nucleus cross sections

## Neutrino interaction data in $\Delta(1232)$ region



- ALL models fit this data by adjusting  $g_{AN\!A}$ 
  - ightarrow very important data
- Discrepancy between BNL & ANL data
  - → theoretical uncertainty in neutrino-nucleus cross sections



 $\rightarrow$  discrepancy resolved (probably)

 $\frac{\sigma(\text{CC1}\pi;\text{data})}{\sigma(\text{CC0}\pi;\text{data})} \times \sigma(\text{CCQE};\text{model})$ 

Flux uncertainty is cancelled out



## Neutrino interaction data in $\Delta(1232)$ region



- ALL models fit this data by adjusting  $g_{ANA}$ •
  - $\rightarrow$  very important data
- Discrepancy between BNL & ANL data •
  - $\rightarrow$  theoretical uncertainty in neutrino-nucleus cross sections





Reanalysis of original data

 $\rightarrow$  discrepancy resolved (probably)

 $\frac{\sigma(\text{CC1}\pi;\text{data})}{\times\sigma(\text{CCQE};\text{model})}$  $\sigma(CC0\pi;data)$ 

Flux uncertainty is cancelled out

 $v_{\mu}p \rightarrow \mu \pi^{+} p$  data were extracted from  $v_{\mu}d \rightarrow \mu \pi^{+} p n$  data Nuclear effects matter ?

Mechanisms (including nuclear effects) for  $v_u d \rightarrow \mu \pi N N$ 



#### Nuclear effect managements

Exp. Quasi-free events were (supposedly) selected in ANL and BNL analyses Theory Fermi motion considered in fixing  $g_{ANA}$  Hernandez et al. (2010), Alam et al. (2016)

**Q** : Should we still consider final state interactions (FSI) effects ?

FSI effects on  $v_u d \rightarrow \mu \pi N N$  have been explored with a dynamical model Wu et al. (2015)

## FSI effects on $v_{\mu} d \rightarrow \mu \pi^+ p n_{\mu}$

Wu, Lee, Sato, PRC91, 035203 (2015)



## FSI effects on $v_{\mu} d \rightarrow \mu \pi^+ p n$ Wu, Lee, Sato, PRC91, 035203 (2015)



#### Wu et al. focused on quasi-free kinematics only

 $\rightarrow$  whole phase-space need to be examined to understand FSI effects on ANL and BNL data

$$\sigma = \int dp_{N_1} dp_{N_2} dp_{\mu} dp_{\pi} \delta^{(4)} (P_i - P_f) |M|^2 \quad (7 \text{ dim. non-trivial numerical integral})$$

Numerically challenging problem

## FSI effects on $v_u d \rightarrow \mu \pi^+ p n$ Wu, Lee, Sato, PRC91, 035203 (2015)



#### Wu et al. focused on quasi-free kinematics only

 $\rightarrow$  whole phase-space need to be examined to understand FSI effects on ANL and BNL data

$$\sigma = \int dp_{N_1} dp_{N_2} dp_{\mu} dp_{\pi} \delta^{(4)} (P_i - P_f) |M|^2 \quad (7 \text{ dim. non-trivial numerical integral})$$

Numerically challenging problem will be managed with Monte-Carlo integral

## This work

- $v_{\mu} d \rightarrow \mu \pi NN$  cross sections of the whole phase-space are calculated with a dynamical model including FSI ; for the first time
- FSI effect on spectator momentum distribution  $d\sigma/dp_s$  is examined
- Find a useful recipe to extract elementary  $v_{\mu}N \rightarrow \mu \pi N$  cross sections from  $v_{\mu}d \rightarrow \mu \pi NN$  spectator momentum distribution
- Extract  $v_{\mu}N \rightarrow \mu \pi N$  total cross sections by correcting (flux-corrected) ANL and BNL data for FSI and Fermi motion

### **Future impact**

→ Significantly improved elementary  $v_{\mu}N \rightarrow \mu^{-}\pi N$  model to be implemented in neutrino-nucleus reaction model for oscillation experiments of the precision era

## $v_{\mu} d \Rightarrow \mu \pi NN$ reaction model based on

## dynamical coupled-channels model

Model for  $v_{\mu} d \rightarrow \mu \pi N N$ 

### Multiple scattering theory truncated at the first-order rescattering



### **Elementary amplitudes**

 $W^{\pm}N \rightarrow \pi N, \ \pi N \rightarrow \pi N$  (off-shell) amplitude  $T_{NN}$ , deuteron w.f.  $T_{NN}$ , deuteron w.f. CD-Bonn potential (Machleidt et al., PRC 63 (2001))

3-dim. loop integral with off-shell amplitudes are numerically evaluated

## Dynamical coupled-channels model

Kamano, SXN, Lee, Sato, PRC 88, 035209 (2013) SXN, Kamano, Lee, Sato, PRD 92, 074024 (2015)



Developed through analyzing  $\gamma^{(*)}N$ ,  $\pi N \rightarrow \pi N$ ,  $\eta N$ ,  $K\Lambda$ ,  $K\Sigma$  data (~27,000 data pts.)

$$\rightarrow$$
 Extended to  $vN \rightarrow l X$  (X =  $\pi N$ ,  $\pi \pi N$ ,  $\eta N$ ,  $K\Lambda$ ,  $K\Sigma$ )

### **Unique features**

- Hadronic rescattering and channel-couplings are taken into account
  - $\leftarrow$  requirement from the unitarity
- Interference among resonant and non-resonant mechanisms are under control within the model
- One-pion AND two-pion productions for the whole resonance region are described

### $\gamma p \rightarrow \pi^0 p$ do/d

#### $d\sigma/d\Omega$ for W < 2.1 GeV

### Comparison of DCC model with data

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)



Vector current (Q<sup>2</sup>=0) for  $1\pi$ Production is well-tested by data

## Comparison of DCC model with single pion data



DCC model prediction is consistent with BNL data (before flux correction)

DCC model has flexibility to fit ANL data ( $ANN^*(Q^2)$ )

We will fit data after the issue of nuclear effects on the data is clarified

Results

$$\gamma d \Rightarrow \pi N N$$
: model predictions and data

#### Purpose : validate our DCC-based deuteron-reaction model



 $\gamma d \rightarrow \pi^0 pn$ 

 $\gamma d \rightarrow \pi^- pp$ 

• Large NN FSI effect for  $\pi^0$  productions

← NN and deuteron wave fn. are orthogonal

- FSI effects are small for  $\pi^-$  productions
- Reasonable agreement with data  $\rightarrow$  reliable estimate of FSI effects on neutrino-deuteron

Data: EPJA 6, 309 (1999); 10, 365 (2001) for  $\gamma d \rightarrow \pi^0 pn$ , NPB 65, 158 (1973) for  $\gamma d \rightarrow \pi^- pp$ 

Minimal information to extract  $v_{\mu}N \rightarrow \mu \pi N$  cross sections

Contribution from other nucleon (spectator) is expected to be small in small  $p_s$  region



Phase-space integral for  $v_{\mu} d \rightarrow \mu^{-} \pi^{+} p n$  is done with Monte-Carlo method

 $\rightarrow$  central values with statistical errors

Minimal information to extract  $v_{\mu}N \rightarrow \mu \pi N$  cross sections

Contribution from other nucleon (spectator) is expected to be small in small  $p_s$  region



Convoluted cross section ( $\tilde{\sigma}$ ):  $\frac{d\tilde{\sigma}_{\alpha}(E_{\nu})}{dp_{s}} = p_{s}^{2} \int d\Omega_{p_{s}} \frac{\sigma_{\alpha}(\tilde{E}_{\nu})}{|\Psi_{d}(\vec{p}_{s})|^{2}} \qquad \begin{array}{l} \alpha = v_{\mu}N \rightarrow \mu^{-}\pi^{+}N \\ \Psi_{d} : \text{deuteron w.f.} \\ \Psi_{d} : \text{deuteron w.f.} \end{array}$ 

Minimal information to extract  $v_{\mu} N \rightarrow \mu \pi N$  cross sections

Contribution from other nucleon (spectator) is expected to be small in small  $p_s$  region



Difference between  $\sigma$  (Impulse) and  $\tilde{\sigma} \rightarrow \text{contribution from the other nucleon}$  $\sigma(v_{\mu}p \rightarrow \mu^{-}\pi^{+}p) \approx 9 \times \sigma(v_{\mu}n \rightarrow \mu^{-}\pi^{+}n)$ 

Minimal information to extract  $v_{\mu} N \rightarrow \mu \pi N$  cross sections

Contribution from other nucleon (spectator) is expected to be small in small  $p_s$  region



### Small $p_s$ region

Larger contamination of  $v_{\mu}p \rightarrow \mu^{-}\pi^{+}p$  in quasi-free neutron (small  $p_{p}$ ) region  $\leftarrow \sigma(v_{\mu}p \rightarrow \mu^{-}\pi^{+}p) \approx 9 \times \sigma(v_{\mu}n \rightarrow \mu^{-}\pi^{+}n)$ 

$$v_{\mu} d \Rightarrow \mu^{-} \pi^{+} p n$$
 spectator momentum distribution

### **FSI effect**



Naïve expectation : FSI affects high  $p_s$  region, leaving small  $p_s$  region unchanged Reality : FSI significantly reduces spectrum in small  $p_s$  (quasi-free peak) region large NN FSI effect  $\leftarrow$  orthogonality between NN scattering state and deuteron

FSI effect is small for  $v_{\mu} d \rightarrow \mu \pi^0 p p$  spectator momentum distribution



Ratio of spectator momentum distribution and convoluted cross section

Other nucleon's contribution and FSI effects on the spectator momentum distributions can be seen more clearly and quantitatively

$$N_{\alpha}(E_{\nu}, p_{s}) = \frac{d\sigma_{\nu d}(E_{\nu})/dp_{s}}{d\tilde{\sigma}_{\alpha}(E_{\nu})/dp_{s}}$$

- ▲ Impulse
- Impulse + NN FSI
- **x** Impulse + NN +  $\pi$ N FSI



 $N_{\alpha}(E_{\nu}, p_s) \approx 1 \rightarrow$  quasi-free process dominates

 $\neq 1 \rightarrow$  other nucleon's contribution and/or FSI

$$N_{\alpha}(E_{\nu}, p_{s}) = \frac{d\sigma_{\nu d}(E_{\nu})/dp_{s}}{d\tilde{\sigma}_{\alpha}(E_{\nu})/dp_{s}}$$

- ▲ Impulse
- Impulse + NN FSI
- **x** Impulse + NN +  $\pi$ N FSI



- NN FSI effect is larger for smaller  $E_{v}$
- $\pi N$  FSI is large correction to quasi-free  $v_{\mu} n \rightarrow \mu^{-} \pi^{+} n$ ;  $\sigma(\pi^{+} p \rightarrow \pi^{+} p) \approx 9 \times \sigma(\pi^{+} n \rightarrow \pi^{+} n)$
- FSI effects depend on spectator momentum



Phenomenological formula fitted to  $N_{\alpha}(E_{\nu}, p_{s})$  is practically useful

- From  $d\sigma_{vd}(E_v)/dp_s$  data,  $d\tilde{\sigma}_{\alpha}(E_v)/dp_s$  can be extracted with FSI taken into account
- Model can be easily tested against  $d\tilde{\sigma}_{\alpha}(E_{\nu})/dp_{s}$
- $d\sigma_{vd}(E_v)/dp_s$  data may be obtained in future neutrino-deuteron experiment INT embedded workshop, June 25-29, 2018
- $N_{\alpha}(E_{\nu}, p_s)$  is ratio

 $\rightarrow$  model dependence from using DCC  $v_{\mu}N \rightarrow \mu^{-}\pi N$  model is expected to be small

$$N_{\alpha}(E_{\nu}, p_{s}) \equiv \frac{d\sigma_{\nu d}(E_{\nu})/dp_{s}}{d\tilde{\sigma}_{\alpha}(E_{\nu})/dp_{s}}$$

- ▲ Impulse
- Impulse + NN FSI
- **x** Impulse + NN +  $\pi$ N FSI



$$N_{\alpha}^{\text{fit}}(E_{\nu}, p_s) = A_{\alpha}(E_{\nu}) + B_{\alpha}(E_{\nu})p_s \qquad A_{\alpha}(x) = \frac{a_{\alpha}x^2 + b_{\alpha}x + c_{\alpha}}{x^2 + d_{\alpha}x + e_{\alpha}}, \quad B_{\alpha}(x) = \frac{f_{\alpha}x + g_{\alpha}}{x + h_{\alpha}}$$

Parameters  $(a_{\alpha} - h_{\alpha})$  are fitted to  $N_{\alpha}(E_{\nu}, p_s)$  over  $p_s < 50$  MeV and  $0.4 < E_{\nu} < 2$  GeV

- Significant FSI effects on spectator momentum distributions of  $v_{\mu} d \rightarrow \mu \pi^+ p n$ in quasi-free peak region
- (Flux-corrected) ANL and BNL data have not been corrected for FSI but need to be
- We extract  $v_{\mu}N \rightarrow \mu \pi N$  cross section from flux-corrected ANL and BNL data by further correcting it for FSI and Fermi-motion
- Details of ANL and BNL analyses have been lost

ightarrow A reasonable assumption needs to be made

**Procedure** (temporary; still under study)

1. Fit  $d\sigma_{vd}(E_v)/dp_s$  with  $\sigma_{vN}^{\text{fit}}(E_v)$  so that  $\int_0^{p_s^{\text{max}}} dp_s \frac{d\sigma_{vd}(E_v)}{dp_s} \approx \int_0^{p_s^{\text{max}}} d^3p_s \sigma_{vN}^{\text{fit}}(E_v) |\Psi_d(\vec{p}_s)|^2$ 



**Procedure** (temporary; still under study)

1. Fit  $d\sigma_{vd}(E_v)/dp_s$  with  $\sigma_{vN}^{\text{fit}}(E_v)$  so that  $\int_0^{p_s^{\text{max}}} dp_s \frac{d\sigma_{vd}(E_v)}{dp_s} \approx \int_0^{p_s^{\text{max}}} d^3p_s \sigma_{vN}^{\text{fit}}(E_v) |\Psi_d(\vec{p}_s)|^2$ 

### Assumption:

For  $p_s < p_s^{\text{max}}$  (small  $p_s$  region including quasi-free peak),  $d\sigma_{vd}(E_v)/dp_s$  is from quasi-free  $v_{\mu}N \Rightarrow \mu \pi N$  process (no effect from the other nucleon) and mostly follows Fermi motion shape,  $|\Psi_d(\vec{p}_s)|^2$ 

**Procedure** (temporary; still under study)

1. Fit  $d\sigma_{vd}(E_v)/dp_s$  with  $\sigma_{vN}^{\text{fit}}(E_v)$  so that  $\int_0^{p_s^{\text{max}}} dp_s \frac{d\sigma_{vd}(E_v)}{dp_s} \approx \int_0^{p_s^{\text{max}}} d^3p_s \sigma_{vN}^{\text{fit}}(E_v) |\Psi_d(\vec{p}_s)|^2$ 

2. Ratio  $\sigma_{vN}(E_v) / \sigma_{vN}^{\text{fit}}(E_v)$  is the correction factor to be multiplied to

flux-corrected ANL and BNL data (PRD 90, 112017 (2014), EPJC 76, 474 (2016))

(  $\sigma_{vN}(E_v)$  : DCC  $v_u N \rightarrow \mu \pi N \mod 1$ )









## Summary

- $v_{\mu} d \rightarrow \mu \pi NN$  cross sections of the whole phase-space are calculated with a dynamical model including FSI ; for the first time
- Examined FSI effect on spectator momentum distribution  $d\sigma/dp_s$
- Found a useful recipe to extract  $v_{\mu}N \rightarrow \mu \pi N$  cross sections from  $v_{\mu}d \rightarrow \mu \pi NN$  spectator momentum distribution (from future exp.)
- Extracted  $v_{\mu}N \rightarrow \mu \pi N$  total cross sections by correcting (flux-corrected) ANL and BNL data for FSI and Fermi motion (preliminary)

### **Future impact**

→ Significantly improved elementary  $\nu_{\mu} N \rightarrow \mu^{-} \pi N$  model to be implemented in neutrino-nucleus reaction model for oscillation experiments of the precision era Thank you very much for your attention

Acknowledgments

- Financial support for this work
   KAKENHI JP25105010
   FAPESP 2016/15618-8
- Computing resource
   SR16000 at YITP in Kyoto University
   Bebop at Argonne National Laboratory
   Cori at National Energy Research Scientific Computing Center



 $v_{\mu} d \rightarrow \mu \pi NN$  total cross sections



- (Mostly NN) FSI reduces  $\sigma$  by 10%, 6%, 5% at  $E_{v}$  = 0.5, 1, 1.5 GeV
- $\pi N$  FSI hardly changes  $\sigma(v_{\mu} d \rightarrow \mu \pi^+ p n)$
- FSI effects are very small for  $\sigma(v_{\mu} d \rightarrow \mu \pi^0 p p)$

 $d\sigma/d\Omega_u$  and  $d\sigma/dp_u$  for  $v_u d \rightarrow \mu \pi^+ p n$  at  $E_v = 1$  GeV



- Significant FSI effects are seen in narrow kinematical windows
  - $\rightarrow$  moderate reduction of total cross sections

 $E_{v} = 0.5 \, \text{GeV}$ 

VS

 $E_{v} = 1 \, \text{GeV}$ 



 $E_v = 0.5 \text{ GeV}$  vs  $E_v = 1 \text{ GeV}$ 



- NN FSI effect is large at low NN energy region (≤ 50 MeV) where orthogonality between *pn* scattering states and deuteron is most effective
- Low NN energy region occupies a relatively larger portion of phase-space for low  $E_{\gamma}$
- → Larger NN FSI effect for low  $E_v$

### **Neutrino-nucleus scattering for v-oscillation experiments**

Wide kinematical region with different characteristic 

Different expertise need integrated



Collaboration at J-PARC Branch of KEK Theory Center

Current status reviewed in *Reports on Progress in Physics* **80** (2017) 056301

"Towards a Unified Model of Neutrino-Nucleus Reactions for Neutrino Oscillation Experiments"



## **BNL** analysis

PRD 34, 2554 (1986)

Previous models for *v*-induced  $1\pi$  production in resonance region

resonant only



Rein et al. (1981), (1987); Lalalulich et al. (2005), (2006)

 $VNN^*$ : helicity amplitudes listed in PDG  $ANN^*$ : quark model, PCAC relation to  $|\pi NN^*|$  (PDG) relative phases among  $N^{*'}$ s are out of control

+ non-resonant (tree-level non-res)

Hernandez et al. (2007), (2010) ; Lalakulich et al. (2010)



+ rescattering ( $\pi N$  unitarity,  $\Delta(1232)$  region) Sato, Lee (2003), (2005)



### DCC (Dynamical Coupled-Channel) model

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation for meson-baryon scattering

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$

$$\{a, b, c\} = \pi N, \ \eta N, \ \pi \pi N, \ \pi \Delta, \sigma N, \rho N, \ K\Lambda, \ K\Sigma$$

By solving the LS equation, coupled-channel unitarity is fully taken into account

### DCC (Dynamical Coupled-Channel) model

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation for meson-baryon scattering



### DCC (Dynamical Coupled-Channel) model

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation for meson-baryon scattering

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$



In addition,  $\gamma N$ ,  $W^{\pm}N$ , ZN channels are included perturbatively



### **Relation between neutrino and electron (photon) interactions**

Charged-current (CC) interaction (e.g.  $v_{\mu} + n \rightarrow \mu^{-} + p$ )

$$L^{cc} = \frac{G_F V_{ud}}{\sqrt{2}} [J_{\lambda}^{cc} \ell_{cc}^{\lambda} + h.c.] \qquad J_{\lambda}^{cc} = V_{\lambda} - A_{\lambda} \qquad \ell_{cc}^{\lambda} = \overline{\psi}_{\mu} \gamma^{\lambda} (1 - \gamma_5) \psi_{\nu}$$

Electromagnetic interaction (e.g.  $\gamma^{(*)} + p \rightarrow p$ )

$$L^{em} = e J_{\lambda}^{em} A_{em}^{\lambda} \qquad \qquad J_{\lambda}^{em} = V_{\lambda} + V_{\lambda}^{IS}$$

*V* and *V*<sup>*IS*</sup> in  $J^{em}$  can be separately determined by analyzing photon ( $Q^2=0$ ) and electron reaction ( $Q^2\neq 0$ ) data on both proton and neutron targets, because:

$$= - < n \mid V_{\lambda} \mid n > \qquad = < n \mid V_{\lambda}^{IS} \mid n >$$

Matrix element for the weak vector current is obtained from analyzing electromagnetic processes

$$= \sqrt{2}$$

## **DCC model for axial current**

Because neutrino reaction data are scarce, axial current cannot be determined phenomenologically → Chiral symmetry and PCAC (partially conserved axial current) are guiding principle

**PCAC relation**  $\langle X' | q \cdot A | X \rangle \sim i f_{\pi} \langle X' | T | \pi X \rangle$ 

### *Q*<sup>2</sup>=0



Interference among resonances and background can be uniquely fixed within DCC model

### **DCC model for axial current**

### $Q^2 \neq 0$ $F_A(Q^2)$ : axial form factors

non-resonant mechanisms

$$F_A(Q^2) = \left(\frac{1}{1+Q^2/M_A^2}\right)^2$$
  $M_A = 1.02 \text{ GeV}$ 

resonant mechanisms

$$F_A(Q^2) = \left(\frac{1}{1+Q^2/M_A^2}\right)^2$$

More neutrino data are necessary to fix axial form factors for  $ANN^*$ 

Neutrino cross sections will be predicted with this axial current

## DCC analysis of $\gamma N$ , $\pi N \rightarrow \pi N$ , $\eta N$ , $K\Lambda$ , $K\Sigma$

## and electron scattering data

## DCC analysis of meson production data

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

Fully combined analysis of  $\gamma N$ ,  $\pi N \rightarrow \pi N$ ,  $\eta N$ ,  $K\Lambda$ ,  $K\Sigma$  data

 $d\sigma/d\Omega$  and polarization observables (W  $\leq$  2.1 GeV)

~ 23,000 data points are fitted

by adjusting parameters ( $N^*$  mass,  $N^* \rightarrow MB$  couplings, cutoffs)

Data for electron scattering on proton and neutron are analyzed by adjusting  $\gamma^* N \rightarrow N^*$  coupling strength at different  $Q^2$  values ( $Q^2 \le 3 (\text{GeV}/c)^2$ )

## Partial wave amplitudes of $\pi$ N scattering



## Partial wave amplitudes of $\pi$ N scattering



### Predicted $\pi N \rightarrow \pi \pi N$ total cross sections with our DCC model



### Single $\pi$ production in electron-proton scattering

Purpose : Determine  $Q^2$  – dependence of vector coupling of p- $N^*$ :  $VpN^*(Q^2)$ 

 $\sigma_T + \varepsilon \sigma_L$  for  $Q^2=0.40 (\text{GeV}/c)^2$  and W=1.1-1.68 GeV



 $p(e,e'\pi^0)p$ 

 $p(e,e'\pi^+)n$ 

 $\cos \theta_{\pi}^{*}$ 

 $\cos \theta_{\pi}^{*}$ 

### **Inclusive electron-proton scattering**



Data: JLab E00-002 (preliminary)

- Reasonable fit to data for application to neutrino interactions
- Important  $2\pi$  contributions for high W region

Similar analysis of electron-neutron scattering data has also been done

DCC vector currents has been tested by data for whole kinematical region relevant to neutrino interactions of  $E_v \le 2 \text{ GeV}$ 

Cross section for  $v_{\mu} N \rightarrow \mu X$ 



- $\pi N \& \pi \pi N$  are main channels in few-GeV region
- DCC model gives predictions for all final states
- $\eta N$ , KY cross sections are  $10^{-1} 10^{-2}$  smaller

## Cross section for $v_{\mu} N \rightarrow \mu X$



- $\pi N \& \pi \pi N$  are main channels in few-GeV region
- DCC model gives predictions for all final states
- $\eta N$ , KY cross sections are  $10^{-1} 10^{-2}$  smaller

### Comparison with double pion data



Fairly good DCC predication

ANL Data : PRD **28**, 2714 (1983) BNL Data : PRD **34**, 2554 (1986)

First dynamical model for 2  $\pi$  production in resonance region

## Mechanisms for $v_{\mu} N \rightarrow \mu \pi N$

![](_page_63_Figure_1.jpeg)

- $\Delta(1232)$  dominates for  $v_{\mu}p \rightarrow \mu^{-}\pi^{+}p$  (*I*=3/2) for  $E_{v} \leq 2 \text{ GeV}$
- Non-resonant mechanisms contribute significantly
- Higher  $N^*$ s becomes important towards  $E_v \approx 2$  GeV for  $v_\mu n \rightarrow \mu \pi N$

## $d\sigma/dW dQ^2$ (×10<sup>-38</sup> cm<sup>2</sup>/GeV<sup>2</sup>)

 $E_{v} = 2 \text{ GeV}$ 

 $v_{\mu}p \rightarrow \mu^{-}\pi^{+}p$ 

![](_page_64_Figure_3.jpeg)

![](_page_64_Figure_4.jpeg)

## $d\sigma/dW dQ^2$ (×10<sup>-38</sup> cm<sup>2</sup>/GeV<sup>2</sup>)

 $E_{v} = 2 \text{ GeV}$ 

![](_page_65_Figure_2.jpeg)

![](_page_65_Figure_3.jpeg)