Genie

Overview of version 3 major release

Marco Roda mroda@liverpool.ac.uk marco@genie-mc.org

on behalf of GENIE collaboration

University of Liverpool

16 October 2018 NuInt - GSSI L'Aquila

Neutrino MC generators: our vision

- Connect neutrino fluxes and observables.
 - event topologies and kinematics
- Good generators
 - optimal coverage of physics processes
 - Uncertainty validation
 - Tune the physics models
- Specific requirements for experiments
 - fast enough for MC analyses
 - being able to prove the validity of a configuration
 - ⇒ Simple models can be perfectly acceptable

Neutrino MC generators: our vision

- Connect neutrino fluxes and observables
 - event topologies and kinematics
- Good generators
 - optimal coverage of physics processes
 - Uncertainty validation
 - Tune the *physics* models
- Specific requirements for experiments
 - fast enough for MC analyses
 - being able to prove the validity of a configuration
 - ⇒ Simple models can be perfectly acceptable
- ⇒ Tuning is difficult CPU time
 - ⇒ Unprecedented systematic tuning program

We don't believe in a perfect theory approach

- There are always things that need to be derived from measurements
- ⇒ Dealing with errors is unavoidable

Roles of generators in oscillation physics

- Compare data and models
 - Reliability and validity region
 - ⇒ You cannot study oscillations without fully understood models
- Compare dataset against dataset
 - Data quality and data sources are increasing ⇒ tensions
 - ⇒ joint analyses
 - ⇒ comparing results from different experiments
- Global fits
 - A generator is the ideal place for global fits
 - Controls the model implementation
 - Finding the best parameters
 - Cross Section priors based on data
- Feedback for experiments
 - Drive the format of cross section releases
 - Hint toward key measurements

Status

GENIE Collaboration

Luis Alvarez Ruso⁸, Costas Andreopoulos^{2,5}, Christopher Barry², Francis Bench², Steve Dennis², Steve Dytman³, Hugh Gallagher⁷, Steven Gardiner¹, Walter Giele¹, Robert Hatcher¹, Libo Jiang³, Rhiannon Jones², Igor Kakorin⁴, Konstantin Kuzmin⁴, Anselmo Meregaglia⁶, Donna Naples³, Vadim Naumov⁴ Gabriel Perdue¹, Marco Roda², Jeremy Wolcott⁷, Júlia Tena Vidal², Julia Yarba¹

[Faculty, Postdocs, PhD students]

- 1 Fermi National Accelerator Laboratory, 2 University of Liverpool, 3 University of Pittsburgh, 4 JINR Dubna,
- 5 STFC Rutherford Appleton Laboratory, 6 CENBG Université de Bordeaux, 7 Tufts University, 8 Valencia University

Core GENIE mission - from GENIE by-law

- Framework "... provide a state-of-the-art neutrino MC generator for the world experimental neutrino community ..."
- Universality "... simulate all processes for all neutrino species and nuclear targets, from MeV to PeV energy scales ..."
 - Global fit "... perform global fits to neutrino, charged-lepton and hadron scattering data and provide global neutrino interaction model tunes ..."

Status overview

Generators for experiments

- Well established generator
 - Used by many experiments around the world
 - Fermilab experiments are driving the momentum
 - Lot of interest from LAr experiments
- Two main efforts
 - Model development
 - Mostly happen during the latest releases of GENIE v2
 - arowing interest from theorists wanting to supply new models
 - Tuning
 - ⇒ Entering the tuning phase
- The new release v3
 - Interface with the developments
 - ⇒ Tunes against public datasets
 - ⇒ Easy way to share configurations
 - Experiments can propose their own configuration for others to use

Models

Models

- Steady introduction as alternate models
- Many thanks to all who contributed
 - more detailed list in backup
- List of most interesting physics introduction:
 - Valencia complete QE+MEC+LFG model
 - Berger-Sehgal resonance model+MiniBooNE form factors
 - Berger-Sehgal coherent model + updated Rein-Sehgal coherent
 - Single kaon production of Athar et al.
 - New cascade FSI model with medium corrections for pions and nucleons
 - ⇒ See Libo's talk

A complete generation needs more than a set of models

- The experimental smearing mixes all the different interaction process
- There are ad-hoc solutions in every generator that needs tuning
 - ⇒ Transition between RES and DIS interactions
 - ⇒ See Júlia's talk

Database and validation

Database

- Comparing GENIE predictions against public datasets
 - Modern Neutrino Cross Section measurement
 - nuclear targets
 - MiniBooNE, T2K, MINERvA
 - Historical Neutrino Cross Section Measurement
 - Measurements of neutrino-induced hadronic system characteristics
 - e.g. Forward/backward hadronic multiplicity distributions
 - Measurements of hadron-nucleon and hadron-nucleus event characteristics
 - FSI tuning
 - For pion, kaons, nucleons and several nuclear targets
 - Spanning hadron kinetic energies from few tens MeV to few GeV
 - Semi-inclusive electron scattering data
 - electron-nucleus QE data
 - electron-proton resonance data
- ⇒ Validation based on neutrino, electron and hadron beams simulations
 - We are not limited to simulate only neutrinos

 Generators for experiments
 GENIE
 New Genie tools
 Conclusion

 OO
 OOOO
 OOOO
 OO

GENIE Version 3

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

graphics by grafiche.testi@gmail.com

- Interface with the work behind the scenes
- ⇒ "Comprehensive Model Configurations"
 - Self-consistent collections of primary process models
 - Help cooperation between collaborations
 - Unified model identifications
 - single command-line flag
 - --tune G18_02a_00_000
 - Complete characterisation against public data
 - Possibility to host configurations provided by experiments
 - Access to tunes against datasets
 - same interface
 - Documentation:
 - Manual
 - Dedicated web page tunes.genie-mc.org/

Comprehensive Model Configurations

CMC of interest

Generators for experiments

- G18_01a and G18_01b Default + MEC
 - with Empirical MEC
 - CCQE process is Llewellyn Smith Model
 - Dipole Axial Form Factor Depending on $M_A = 0.99 \, GeV$
 - Nuclear model: Fermi Gas Model Bodek, Ritchie
 - Inclusion of diffractive and Lambda production models
- G18_02a and G18_02b Improved pion production models
 - Similar to G18_01a and G18_01b
 - Berger-Sehgal for resonant interaction
 - Berger-Sehgal for coherent interaction
- G18_10a/b and G18_10i/j Theory based model
 - Nieves' MEC
 - CCQE process is Nieves
 - Dipole Axial Form Factor (a/b) Depending on $M_A = 0.99 \, GeV$
 - Z-expansion (i/j)
 - Nuclear model: Local Fermi Gas Model
- G00 00a Historic Default
 - now deprecated
- Dark matter ⇒ GDM18_00a
- Low energy ⇒ GVLE18_01a

Technical updates

- New Git Repository https://github.com/GENIE-MC
 - Contributions are welcome through this new channel
 - Thanks to HEPForge for the many years of support
- Reweight is now a detached and independent repository
- Website http://www.genie-mc.org/
- Updated manual hosted on a dedicated DocDB
- Code
 - System handles multiple configurations
 - Updated XML file structure ⇒ safer and with no redundancies
 - Files re-organisation

Tuning

- Why tuning?
 - Constraint parameters
 - Provide specific tunes for experiments
 - Liquid Argon tune
- Expected Output:
 - Parameter sets from data from various experiments
 - with estimated systematic errors
 - Parameter covariance matrix
 - ⇒ No official support until v4
- Numerical methodology
 - Old problem in High Energy Physics
 - CPU demanding
 - Solution found in the Professor suite
 - http://professor.hepforge.org
 - Numerical assistant
 - Developed for ATLAS experiment

Parameterisation instead of a full MC

- Parameterisation instead of a full MC
 - Select points of param space

- Parameterisation instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force

- Parameterisation instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - Parameterisation I(p)

- Parameterisation instead of a full MC.
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - Parameterisation I(p)
 - Repeat for each bin
- a parameterization $I_i(p)$ for each bin
 - N dimension polynomial
 - Including all the correlation terms up to the order of the polynomial
- \Rightarrow Minimise according to $\overline{I}(p)$
 - ∼ 20 parameters
 - This limit is due to disk space requirements
 - It can be overcome
 - Special thanks to H. Schulz

Advantages and expectations

- All parameters can be tuned
 - Not only reweight-able
 - ⇒ no dedicated machinery to develop
- Advanced features
 - Take into account correlations
 - weights specific for each bin and/or dataset
 - Proper treatment while handling multiple datasets
 - Restrict the fit to particular subsets
 - Priors can be included
 - Nuisance parameters can be inserted
 - proper treatment for datasets without correlations
 - ⇒ MiniBooNE, old bubble chamber datasets
- Professor based Reweight package in development
 - Reweight hard to maintain: each model requires a specific reweight module
 - Better interface with the errors produced by a global fit
 - Allow non-reweightable parameters e.g. HN FSI
 - ⇒ version 4

Conclusion

Next steps

- Tuning program
 - hadronization retune
 - Pythia 6 and 8 (implementation is ongoing)
 - Tune of FSI
 - Both hN and hA intranuke
 - Free nucleon cross section model
 - ⇒ Julia's talk about RES/DIS transition region
- Data from liquid argon experiments
 - Part of GENIE collaboration is in SBND
 - Plan for argon tunes
- Paper in preparation
- Official code deployed
 - Finalizing the web page for the validation plots

GENIE has improved

- New models
- Systematic validation against Cross section data
- Maintained and rich database
- We have a very powerful fitting machinery
 - Validated with many tunes
 - A new branch of analyses
 - Alternative tool to propagate systematic uncertainties
- Researchers are encouraged to contact us to start a collaboration
 - New theory models
 - New experimental collaborations

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Backup slides

Production version v2.10.0 - New physics models

- Bodek-Christy-Coopersmith eff. spectral function (EPJC 74:3091, 2014).
 B. Coopersmith and A. Bodek (Rochester)
- Very-High Energy extension (up to 5 TeV, working towards PeV scales)
 K. Hoshina (Wisconsin)
- Inclusive η production.
 J. Liu (W&M)
- Berger-Sehgal resonance model (PRD 76, 113004, 2007)
 J. Nowak (Lancaster) and S. Dytman (Pitt)
- Kuzmin-Lyubushkin-Naumov resonance model (MPL A19, 2815, 2004)
 J. Nowak (Lancaster), I. Kakorin (JINR) and S. Dytman (Pitt)
- Improved INTRANUKE/hA FSI model.
 S. Dytman and N. Geary (Pitt)
- Single K model by Alam, Simo, Athar, and Vacas (PRD 82, 033001, 2010).
 C. Marshall (Rochester) and M. Nirkko (Bern)

Production version v2.12.0 - New physics models

- Bhattacharya, Hill, and Paz QE Z expansion model (PRD 84:073006)
 A. Meyer (Chicago)
- Local Fermi Gas & Nieves-Amaro-Valverde CCQE with RPA (Phys. Rev. C70, 055503 (2004); Phys. Rev. C72:019902, 2005)
 J. Johnston and S. Dytman (Pitt)
- Updates to the GENIE hown-grown empirical 2p-2h model S.Dytman (Pitt)
- Valencia 2p-2h model (Phys.Rev. D88:113007, 2013)
 J. Schwehr (CSU), D.Cherdack (CSU) and R. Gran (UMD)
- Berger-Sehgal coherent π production (PRD 79:053003, 2009)
 G. Perdue (Fermilab), H. Gallagher (Tufts), D. Cherdack (CSU)
- Alvarez Ruso, Geng, Hirenzaki and Vacas microscopic coherent pion production (PRC 75:055501, 2007; PRC 76:068501, 2007)
 D.Scully, S. Dennis and S. Boyd (Warwick)

Production version v2.12.0 - New physics models

- Oset, Salcedo and Strottman FSI model (Phys. Lett. B 165:13, 1985; Nucl. Phys. A 468:631, 1987.)
 - T. Golan (Fermilab and Rochester)
- Kaon FSI improvements
 F. de Maria Blaszczyk (LSU), S. Dytman (Pitt)
- Pais QE Hyperon production model (Ann. Phys. 63:361, 1971)
 J. Poage and H. Gallagher (Tufts)
- Updated Rein diffractive pion model (Nucl.Phys. B278:61, 1986).
 J. Wolcott (Tufts)
- Several resonance model updates.
 L.Jiang (Pittsburgh) and I.Kakorin (JINR & ITEP)
- Kuzmin, Naumov energy-dependent axial-mass model. *I.Kakorin (JINR & ITEP)*

Other notable changes in v2.10.0 / v2.12.0

- Upgrade of nucleon decay generator in GENIE.
 M.Sorel (IFIC)
- Simulation of n − n̄ oscillations.
 J. Hewes and G. Karagiorgi (Manchester)
- New Honda, Athar, Kajita, Kasahara and Midorikawa (HAKKM) atm. ν flux (PLB718:1375, 2013) driver added to existing FLUKA and BGLRS ones. G.Majumder, A.Ajmi (INO Collab.); T.Katori (QMUL)
- A new unified event generation app for all Fermilab experiments (in the NuMI, Booster and LBNF beamlines) and updates in the flux drivers.
 R.Hatcher (Fermilab)
- Event reweighting I/O J. Yarba (Fermilab)
- New GSL (GNU Scientific Library) dependency S.Dennis (Warwick/Liverpool)
- "ROOT6 and C++11"-ready!
 S.Dennis (Warwick/Liverpool)
- LHAPDFv5 dependence now optional; CERNLIB/PDFLIB discontinued.
 S.Dennis (Warwick/Liverpool)
- + Bug fixes. For a detailed list see: https://releases.genie-mc.org

GENIE Version 2.12.8

- CCQE models
 - Llewellyn Smith
 - Nieves, Amaro and Valverde
- MEC models
 - Empirical
 - Nieves Simo Vacas
- Nuclear Models
 - Relativistic Fermi Gas
 - Local Fermi Gas
 - Effective Spectral Functions

- Single Kaon
- Λ production

- RES
 - Rein-Sehgal
 - Berger-Sehgal
 - Kuzmin-Lyubushkin-Naumov
- COH
 - Rein-Sehgal
 - Berger-Sehgal
 - Alvarez Ruso
- FSI Intranuke
 - Full Intra-Nuclear cascade
 - Schematic based on Hadron-nucleus data
- Only one Comprehensive Model Configuration (CMC)
- Default tune has not changed

Parametrization residuals

Datasets - 311 data points

- MiniBooNE ν_{μ} CCQE
 - 2D histogram
 - 137 points
 - No correlation matrix
- MiniBooNE $\bar{\nu}_{\mu}$ CCQE
 - 2D histogram
 - 78 points
 - No correlation matrix
- T2K ND280 0π (2016) V2
 - 2D histogram
 - 80 points
 - full covariance matrix
- MINERVA ν_{μ} CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix
- MINERvA ν̄_μ CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix

- Missing Covariance between Neutrino and antineutrino data
 - Minerva released this information!

Data covariance

Data Covariance

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

Muon Angle for 0π events Default Cos θ Data Constraints for Oscillation analyses

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables
- Propagate parameters uncertainty through the parameterization

Model comparison

Model comparison

$$\begin{array}{lll} \underline{\textit{Martini et al.}} & \underline{\textit{Nieves et al.}} & \underline{\textit{Amaro et al.}} & \underline{\textit{Lovato et al.}} & \underline{\textit{Bodek et al.}} \\ \frac{\partial^2 \sigma}{\partial \Omega \, \partial \epsilon'} & = & \frac{G_F^2 \, \cos^2 \theta_c}{2 \, \pi^2} k' \epsilon' \, \cos^2 \frac{\theta}{2} \, \left[\frac{(q^2 - \omega^2)^2}{q^4} \, G_E^2 \, \underline{R_\tau} + \frac{\omega^2}{q^2} \, G_A^2 \, \underline{R_{\sigma\tau(L)}} + \right. \\ & + & 2 \left(\tan^2 \frac{\theta}{2} + \frac{q^2 - \omega^2}{2q^2} \right) \, \left(G_M^2 \, \frac{\omega^2}{q^2} + G_A^2 \right) \, \underline{R_{\sigma\tau(T)}} \pm 2 \, \frac{\epsilon + \epsilon'}{M_N} \, \tan^2 \frac{\theta}{2} \, G_A \, \underline{G_M} \, \underline{R_{\sigma\tau(T)}} \end{array}$$

[M.Martini, FUNFACT | Lab workshop]

Hadronization example

Hadronization example

Hadronization example

Evolving datasets - Old datasets

- Functions of E_{ν}
- "Only" statistical errors

- Ignore nuclear effects
- Poor statistical interpretation
- Poor model discrimination power

Evolving datasets - Present datasets

- Functions of experimental observables
- flux-integrated
- Usually differential cross-sections
 - 1D, 2D
- Organized by topology, not process
- Higher statistics
- More statistically robust
 - ⇒ See Fermilab neutrino seminar by Mikael Kuusela - 2017/04/13

Evolving datasets - Present datasets

- Functions of experimental observables
- flux-integrated
- Usually differential cross-sections
 - 1D, 2D
- Organized by topology, not process
- Higher statistics
- More statistically robust
 - ⇒ See Fermilab neutrino seminar by Mikael Kuusela - 2017/04/13
- Sometimes incomplete
- Helped the development of new models
 - 2p/2h

Future of datasets - a personal view

- One big covariance matrix per experiment
- Correlation between datasets
- Differential cross sections, dim > 2
- No data releases with this format
 - SBND is thinking about a solution
- It is usually a big effort but ...
 - dedicated experiments

We finally have a way to use these datsets

- Statistically coherent
- Complete error analysis

The Comparisons

The GENIE suite contains a package devoted to comparing GENIE predictions against publicly released datasets.

- Provides the opportunity to improve and develop GENIE models
- Crucial database for new GENIE global fit to neutrino scattering data
- All sorts of possible formats and dimensions
- Can store correlations, even between different datasets

The database

- Modern Neutrino Cross Section measurement
 - nuclear targets
 - typically flux-integrated differential cross-sections
 - MiniBooNE, T2K, MINERvA
- Historical Neutrino Cross Section Measurement
 - Bubble chamber experiment
- Measurements of neutrino-induced hadronic system characteristics
 - Forward/backward hadronic multiplicity distributions
 - Multiplicity correlations
 - ...
- Measurements of hadron-nucleon and hadron-nucleus event characteristics (for FSI tuning)
 - For pion, Kaons, nucleons and several nuclear targets
 - Spanning hadron kinetic energies from few tens MeV to few GeV
- Semi-inclusive electron scattering data
 - electron-nucleus QE data
 - electron-proton resonance data

MiniBooNE CCQE

- Both ν and $\bar{\nu}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section.
- flux integrated
- No correlations
- Preferred model is Nieves Model (G16 02a)
 - ullet excellent agreement for u
 - $\chi^2 = 101/137 \text{ DoF}$
- ullet worse for $ar{
 u}$
 - $\chi^2 = 176/78 \text{ DoF}$

MiniBooNE CCQE

- Both ν and $\bar{\nu}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Preferred model is Nieves Model (G16 02a)
 - ullet excellent agreement for u
 - $\chi^2 = 101/137 \text{ DoF}$
- ullet worse for $\bar{\nu}$
 - $\chi^2 = 176/78 \text{ DoF}$

T2K ND280 0π

- Double differential cross section.
- flux integrated
- Fully correlated
- Tensions between datasets.
- Preferred model is G16 01b
 - $\chi^2 = 135/67 \text{ DoF}$
- all models look reasonable "By eye" estimation
 - · correlation is complicated
 - We can't ignore it!

 $\partial^2 \sigma / \partial \; \text{Cos} \theta_{_{\hspace{-.1em} \text{\tiny u}}} / \partial \; P_{_{\hspace{-.1em} \text{\tiny u}}} \; [10^{\text{-38}} \; \text{cm}^2/\text{GeV/n}]$

Data: t2k nd280 numucc0pi 2015

T2K ND280 0π

- Double differential cross section
- flux integrated
- Fully correlated
- Tensions between datasets
- Preferred model is G16 01b
 - $\chi^2 = 135/67 \text{ DoF}$
- all models look reasonable "By eye" estimation
 - correlation is complicated
 - We can't ignore it!

