

GENIE v3 Models Comparison

Libo Jiang for GENIE Collaboration

Univ. of Pittsburgh

October 16, 2018

http://www.genie-mc.org/

GENIE version 3 Comprehensive Model Configurations(CMC)

Introduction to GENIE

GENIE Models Comparison G00_00 series: Historical default configuration.

G00_00a	G00_00b
No MEC	with (empirical) MEC

From G00_00 to G18_01 series: adiabatic evolution of old default.

	G00 00	G18 01
Hadron Transport Model	HAIntranuke/HNIntronuke	HAIntranuke2018/HNIntranuke2018
		Added diffractive and Lambda production

From G18_01 to G18_02 series:

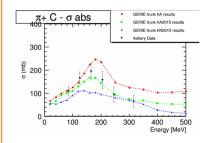
	G18_01	G18_02
RES	Rein-Sehgal	Berger-Sehgal
COH	Rein-Sehgal	Berger-Sehgal

From G18_01 to G18_10 series: theory driven configuration.

	G18_01	G18_10
Nuclear Model	FGM BodekRitchie	Local Fermi Gas (LFG)
QEL	LwlynSmitch	Nieves
2p2h(CC)	Empirical	Nieves
RES	Rein-Sehgal	Berger-Sehgal

Note: in all the G18_** series, G18_**a has the hA model; G18_**b has the hN model

ente


FSI Strategy

Introduction to GENIE

GENIE Models Comparison

hN2018	hA2018
Intranuclear Cascade(INC)	data-driven/simplified version
with medium correction for π (Oset),	with medium correction
and nucleons(Pandharipande/Pieper)	for nucleons
Multiple Scattering	models QE peak
	fully reweightable
less absorption	much absorption
too little scattering at low E	

Comparison between hN and hA

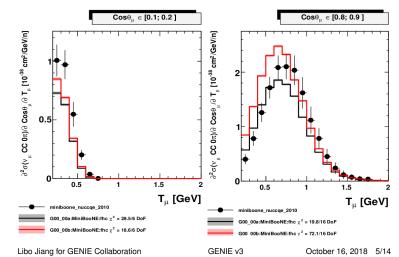
- The figure on the left shows the pion absorption.
- new hN has much less pion absorption than hA.

Genie

Comparison of different CMCs to experimental data

Introduction to GENIE

GENIE Models Comparison

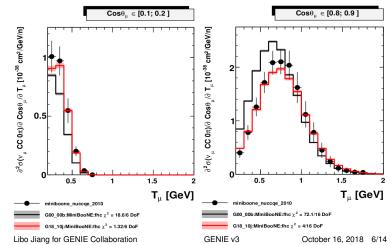

- Experiment data: MINERvA, MiniBooNE
- Experimental datasets: QE-like, Pion Production, Coherent and CC-Inclusive.
- Models to test:

QE	L-S	Nieves
	Free nucleon	includes Random Phase Approximation(RPA),
	no medium effects	tuned to MB data
		in-medium propagator effects
		and Coulomb effect
		MEC
π Production	Rein-Sehgal	Berger-Sehgal
	Limit $m_{\mu} = 0$	Non-zero m _µ
		New form factors
Coherent π	Rein-Sehgal	Berger-Sehgal
	uses pion Deuterium	parameterize the cross section
	experimental result	using experimental data

enie

GENIE model comparison with MiniBooNE QE-like sample

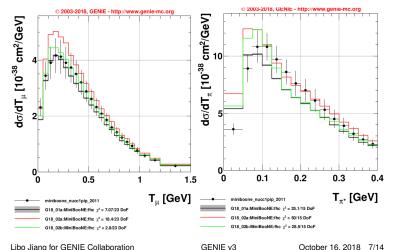
- Figures below show the comparison between G00_00a(with MEC), G00_00b(without MEC) and MiniBooNE data.
- More QE-like signal produced with the MEC production.


Introduction to GENIE

GENIE Models Comparison

GENIE model comparison with MiniBooNE QE-like sample

- Figures below show the comparison between G00_00b (with LS), G18_10j (with Nieves model) and MiniBooNE data;
- With MEC and other corrections, Nieves's result agree with the data much better than LS.

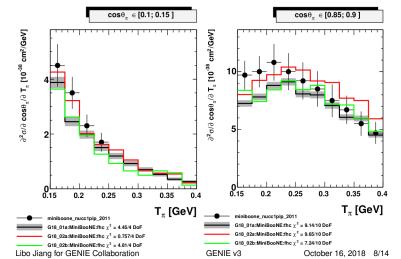

Introduction to GENIE

GENIE Models Comparison

enie

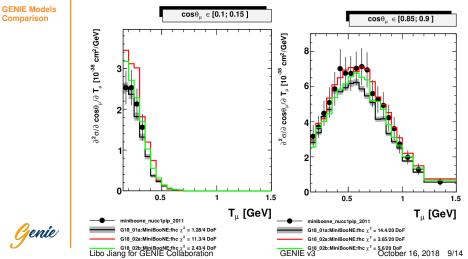
GENIE model comparison with MiniBooNE CC1 π^+ Sample

- Introduction to GENIE
- GENIE Models Comparison
- Figures below show the comparison between G18_01a (**Rein-Sehgal**), G18_02a (**Berger-Sehgal+new** Form Factors, hA) and G18_02b (Berger-Sehgal+new Form Factors, hN) with MiniBooNE data.
- BS+new form factors improve agreement, new FSI increases cross section again.

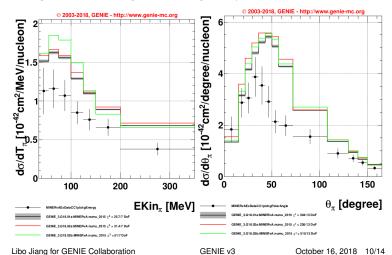

GENIE model comparison with MiniBooNE CC1 π^+ Sample

Figures below show the comparison of T_μ between G18_01a (Rein-Sehgal), G18_02a (Berger-Sehgal+new Form Factors, hA) and G18_02b (Berger-Sehgal+new Form Factors, hN) with Miniboone data in two different θ_μ bins

Changes in model increase magnitude, small changes in shape.

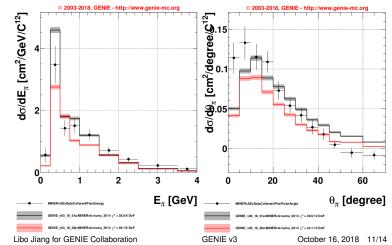

enie

GENIE model comparison with MiniBooNE CC1 π^+ Sample


Figures below show the comparison of T_μ between G18_01a (Rein-Sehgal), G18_02a (Berger-Sehgal+new Form Factors, hA) and G18_02b (Berger-Sehgal+new Form Factors, hN) with Miniboone data in two different θ_μ bins

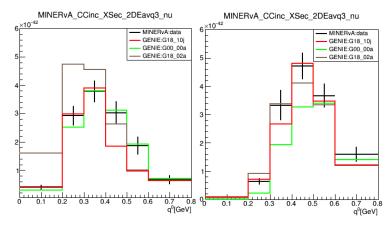
Changes in model increase magnitude, small changes in shape.

GENIE model comparison with MINERvA CC1 π^+ Sample


- Introduction to GENIE
- GENIE Models Comparison
- Figures below show the comparison between G18_01a (Rein-Sehgal), G18_02a (Berger-Sehgal+new Form Factors, hA) and G18_02b (Berger-Sehgal+new Form Factors, hN) with MINERvA data.
- Changes in model increase magnitude, small changes in shape

GENIE model comparison with MINERvA CC-Coherent Sample

- Figures below show the comparision between G18_01a (**Rein-Sehgal**) and G18_02a (**Berger-Sehgal**) with MINERvA data.
- In the low E_{π} region, the cross section of G18_02a is lower than G18_01a because of the Berger-Sehgal model used.


Introduction to GENIE

GENIE Models Comparison

renie

GENIE model comparisons with MINERvA CC-Inclusive Sample

- Figures below shows the distribution of the MINERvA CCinclusive cross section with respect to the energy transfer q⁰ in different q3 bins.
- Left: 0.2<q3<0.3GeV; Right: 0.5<q3<0.6GeV. Newer models match q3 dependence better.

GENIE

GENIE Models Comparison

Genie

GENIE v3

Summary and Conclusion

Introduction to GENIE

GENIE Models Comparison

- GENIE v3 was officially released.
- Instead of setting the default version, GENIE v3 provide multiple comprehensive model configurations for using.
- Many of the new models were developed by theorists in response to previous data.
- We have ability to compare against many datasets, small number of them were shown here.
- New models are were matched to the MiniBooNE datasets. The tension between MiniBooNE 1π⁺ and MINERvA 1π⁺ remains.

GENIE v3

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT Thank You for your attention